This course covers the general mathematical theory of linear stationary and evolution problems plus selected topics chosen on the instructor's interests.
Complex integration, including Goursat's theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard's theorem.
This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. (2nd of two courses)
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.
Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.