A fundamental result in Harmonic Analysis states that many functions defined over the interval [-\pi,\pi] can be decomposed into a Fourier series, that is, decomposed as sums of sines and cosines with integer frequencies. This allows one to describe very complicated functions in a simple way, and therefore provides with a strong tool to study the properties of different families of functions.However, the above decomposition does not hold -- or holds but is not efficient enough-- if the functions are no longer defined over an interval,( e.g.
- You are here:
- Home