Analysis

Series
Time
for
Location
Speaker
Organizer
There is a long standing asymptotic relationship in several areas of analysis, between polynomials and entire functions of exponential type. Many extremal problems for polynomials of degree n turn into analogous extremal problems for entire functions of exponential type, as the degree n approaches infinity. We discuss some of the old such as Bernstein's constant on approximation of |x|, and recent work on Plancherel-Polya and Nikolskii inequalities.
Series
Time
for
Location
Speaker
Organizer
When does the spectrum of an operator determine the operator uniquely?-This question and its many versions have been studied extensively in the field of inverse spectral theory for differential operators. Several notable mathematicians have worked in this area. Among others, there are important contributions by Borg, Levinson, Hochstadt, Liebermann; and more recently by Simon, Gesztezy, del Rio and Horvath, which have further fueled these studies by relating the completeness problems of families of functions to the inverse
Series
Time
for
Location
Speaker
Organizer
We discuss bi-parameter Calderon-Zygmund singular integrals from the point of view of modern probabilistic and dyadic techniques. In particular, we discuss their structure and boundedness via dyadic model operators. In connection to this we demonstrate, via new examples, the delicacy of the problem of finding a completely satisfactory product T1 theorem. Time permitting related non-homogeneous bi-parameter results may be mentioned.
Series
Time
for
Location
Speaker
Organizer
A classical theorem of John Wermer asserts that the algebra of continuous functions on the circle with holomophic extensions to the disc is a maximal subalgebra of the algebra of all continuous functions on the circle. Wermer's theorem has been extended in numerous directions. These will be discussed with an emphasis on extensions to several complex variables.
Series
Time
for
Location
Speaker
Organizer
In this talk we will discuss applications of a new method of proving vector-valued inequalities discovered by M. Bateman and C. Thiele. We give new proofs of the Fefferman-Stein inequality (without using weighted theory) and vector-valued estimates of the Carleson operator using this method. Also as an application to bi-parameter problems, we give a new proof for bi-parameter multipliers without using product theory. As an application to the bilinear setting, we talk about new vector-valued estimates for the bilinear Hilbert transform, and
Series
Time
for
Location
Speaker
Organizer
Philip will be presenting topics (and leading discussion on those topics) from Chapter 2 Section 2 of Bounded Analytic Functions.
Series
Time
for
Location
Speaker
Organizer
Robert will be leading the discussion and presenting topics from Chapter 2 Section 3 of BAF.
Series
Time
for
Location
Speaker
Organizer
This will be a survey talk on the ongoing classification problem for Carleson and reverse Carleson measures for the de Branges-Rovnyak spaces. We will relate these problems to some recent work of Lacey and Wick on the boundedness of the Cauchy transform operator.
Series
Time
for
Location
Speaker
Organizer
I will introduce the cluster value problem, and its relation to the Corona problem, in the setting of Banach algebras of analytic functions on unit balls. Then I will present a reduction of the cluster value problem in separable Banach spaces, for the algebras $A_u$ and $H^{\infty}$, to those spaces that are $\ell_1$ sums of a sequence of finite dimensional spaces. This is joint work with William B. Johnson.
Series
Time
for
Location
Speaker
Organizer
This talk discusses exponential frames and Riesz sequences in L^2 over a set of finite measure. (Roughly speaking, Frames and Riesz sequences are over complete bases and under complete bases, respectively). Intuitively, one would assume that the frequencies of an exponential frame can not be too sparse, while those of an exponential Riesz sequence can not be too dense. This intuition was confirmed in a very general theorem of Landau, which holds for all bounded sets of positive measure. Landau's proof involved a deep study of the eigenvalues of compositions of

Pages

Subscribe to RSS - Analysis