Analysis

Series
Time
for
Location
Speaker
Organizer
In this talk we will connect functional analysis and analytic function theory by studying the compact linear operators on Bergman spaces. In particular, we will show how it is possible to obtain a characterization of the compact operators in terms of more geometric information associated to the function spaces. We will also point to several interesting lines of inquiry that are connected to the problems in this talk. This talk will be self-contained and accessible to any mathematics graduate student.
Series
Time
for
Location
Speaker
Organizer
A brief overview of some integrable and exactly-solvable Schroedinger equations with trigonometric potentials of Calogero-Moser-Sutherland type is given.All of them are characterized bya discrete symmetry of the Hamiltonian given by the affine Weyl group,a number of polynomial eigenfunctions and eigenvalues which are usually quadratic in the quantum number, each eigenfunction is an element of finite-dimensionallinear space of polynomials characterized by the highest root vector, anda factorization property for eigenfunctions.
Series
Time
for
Location
Speaker
Organizer
Self-adjoint $n$-by-$n$ matrices have a natural partial ordering, namely $ A \leq B $ if the matrix $ B - A$ is positive semi-definite. In 1934 K. Loewner characterized functions that preserve this ordering; these functions are called $n$-matrix monotone. The condition depends on the dimension $n$, but if a function is $n$-matrix monotone for all $n$, then it must extend analytically to a function that maps the upper half-plane to itself. I will describe Loewner's results, and then discuss what happens
Series
Time
for
Location
Speaker
Organizer
Asymptotics for L2 Christoffel functions are a classical topic in orthogonal polynomials. We present asymptotics for Lp Christoffel functions for measures on the unit circle. The formulation involves an extremal problem in Paley-Wiener space. While there have been estimates of the Lp Christoffel functions for a long time, the asymptotics are noew for p other than 2, even for Lebesgue measure on the unict circle.
Series
Time
for
Location
Speaker
Organizer
In this talk, we investigate the structures of C*-algebras generated by collections of linear-fractionally-induced composition operators and either the forward shift or the ideal of compact operators. In the setting of the classical Hardy space, we present a full characterization of the structures, modulo the ideal of compact operators, of C*-algebras generated by a single linear-fractionally-induced composition operator and the forward shift. We apply the structure results to compute spectral information for algebraic combinations of
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
In this talk we discuss some nonlinear transformations between moment sequences. One of these transformations is the following: if (a_n)_n is a non-vanishing Hausdorff moment sequence then the sequence defined by 1/(a_0 ... a_n) is a Stieltjes moment sequence. Our approach is constructive and use Euler's idea of developing q-infinite products in power series. Some others transformations will be considered as well as some relevant moment sequences and analytic functions related to them. We will also propose some conjectures about moment transformations
Series
Time
for
Location
Speaker
Organizer
Using integral formulas based on Green's theorem and in particular a lemma of Uchiyama, we give simple proofs of comparisons of different BMO norms without using the John-Nirenberg inequality while we also give a simple proof of the strong John-Nirenberg inequality. Along the way we prove the inclusions of BMOA in the dual of H^1 and BMO in the dual of real H^1. Some difficulties of the method and possible future directions to take it will be suggested at the end.
Series
Time
for
Location
Speaker
Organizer
The classification theorem for a C_0 operator describes its quasisimilarity class by means of its Jordan model. The purpose of this talk will be to investigate when the relation between the operator and its model can be improved to similarity. More precisely, when the minimal function of the operator T can be written as a product of inner functions satisfying the so-called (generalized) Carleson condition, we give some natural operator theoretic assumptions on T that guarantee similarity.
Series
Time
for
Location
Speaker
Organizer
In the first part of the talk we will give a brief survey of significant results going from S. Brown pioneering work showing the existence of invariant subspaces for subnormal operators (1978) to Ambrozie-Muller breakthrough asserting the same conclusion for the adjoint of a polynomially bounded operator (on any Banach space) whose spectrum contains the unit circle (2003). The second part will try to give some insight of the different techniques involved in this series of results, culminating with a brilliant use of Carleson interpolation theory for

Pages

Subscribe to RSS - Analysis