A brief overview of some integrable and exactly-solvable Schroedinger equations with trigonometric potentials of Calogero-Moser-Sutherland type is given.All of them are characterized bya discrete symmetry of the Hamiltonian given by the affine Weyl group,a number of polynomial eigenfunctions and eigenvalues which are usually quadratic in the quantum number, each eigenfunction is an element of finite-dimensionallinear space of polynomials characterized by the highest root vector, anda factorization property for eigenfunctions.
- You are here:
- Home