Analysis

Series
Time
for
Location
Speaker
Organizer
We are going to continue explaining the proof of Seip's Interpolation Theorem for the Bergman Space. We are going to demonstrate the sufficiency of these conditions for a certain example. We then will show how to deduce the full theorem with appropriate modifications of the example.
Series
Time
for
Location
Speaker
Organizer
We are going to continue explaining the proof of Seip's Interpolation Theorem for the Bergman Space. We are going to demonstrate the sufficiency of these conditions for a certain example. We then will show how to deduce the full theorem with appropriate modifications of the example.
Series
Time
for
Location
Speaker
Organizer
We continue our study of Seip's Interpolation Theorem in weighted Bergman spaces. This lecture should cover the necessary direction in the characterization of the Theorem.
Series
Time
for
Location
Speaker
Organizer
It is well known that a needle thrown at random has zero probability of intersecting any given irregular planar set of finite 1-dimensional Hausdorff measure. Sharp quantitative estimates for fine open coverings of such sets are still not known, even for such sets as the Sierpinski gasket and the 4-corner Cantor set (with self-similarities 1/4 and 1/3). In 2008, Nazarov, Peres, and Volberg provided the sharpest known upper bound for the 4-corner Cantor set. Volberg and I have recently used the same ideas to get a similar estimate for the Sierpinski gasket. Namely,
Series
Time
for
Location
Speaker
Organizer
Given points $z_1,\ldots,z_n$ on a finite open Riemann surface $R$ and complex scalars $w_1,\ldots,w_n$, the Nevanlinna-Pick problem is to determine conditions for the existence of a holomorphic map $f:R\to \mathbb{D}$ such that $f(z_i) = w_i$. In this talk I will provide some background on the problem, and then discuss the extremal case. We will try to discuss how a method of McCullough can be used to provide more qualitative information about the solution. In particular, we will show that extremal cases are
Series
Time
for
Location
Speaker
Organizer
In this working seminar we will give a proof of Seip's characterization of interpolating sequences in the Bergman space of analytic functions. This topic has connection with complex analysis, harmonic analysis, and time frequency analysis and so hopefully many of the participants would be able to get something out of the seminar. The initial plan will be to work through his 1993 Inventiones Paper and supplement this with material from his book "Interpolation and Sampling in Spaces of
Series
Time
for
Location
Speaker
Organizer
I will review recent and classical results concerning the asymptotic properties (as N --> \infty) of 'ground state' configurations of N particles restricted to a d-dimensional compact set A\subset {\bf R}^p that minimize the Riesz s-energy functional \sum_{i\neq j}\frac{1}{|x_{i}-x_{j}|^{s}} for s>0. Specifically, we will discuss the following (1) For s < d, the ground state configurations have limit distribution as N --> \infty given by the equilibrium measure \mu_s, while the first
Series
Time
for
Location
Speaker
Organizer
In this talk we will discuss Kolmogorov and Landau type inequalities for the derivatives. These are the inequalities which estimate the norm of the intermediate derivative of a function (defined on an interval, R_+, R, or their multivariate analogs) from some class in terms of the norm of the function itself and norm of its highest derivative. We shall present several new results on sharp inequalities of this type for special classes of functions (multiply monotone and absolutely monotone) and sequences. We will also highlight some of the techniques
Series
Time
for
Location
Speaker
Organizer
In this talk, I will discuss some results obtained in my Ph.D. thesis. First, the point mass formula will be introduced. Using the formula, we shall see how the asymptotics of orthogonal polynomials relate to the perturbed Verblunsky coefficients. Then I will discuss two classes of measures on the unit circle -- one with Verblunsky coefficients \alpha_n --> 0 and the other one with \alpha_n --> L (non-zero) -- and explain the methods I used to tackle the point mass problem involving these measures.
Series
Time
for
Location
Speaker
Organizer
Modulation spaces are a class of Banach spaces which provide a quantitative time-frequency analysis of functions via the Short-Time Fourier Transform. The modulation spaces are the "right" spaces for time-frequency analysis andthey occur in many problems in the same way that Besov Spaces are attached to wavelet theory and issues of smoothness. In this seminar, I will talk about embeddings of modulation Spaces into BMO or VMO (the space of functions of bounded or vanishing mean oscillation, respectively ).

Pages

Subscribe to RSS - Analysis