Analysis

Series
Time
for
Location
Speaker
Organizer

The Mockenhaupt-Mitsis-Bak-Seeger Fourier restriction theorem extends the classical restriction theorem for measures on smooth manifolds to fractal measures. We prove the optimality of the exponent in the Mockenhaupt-Mitsis-Bak-Seeger Fourier restriction theorem in all dimensions. The proof uses number fields to construct fractal measures in R^d. This work is joint with Robert Fraser and Kyle Hambrook.

Series
Time
for
Location
Speaker
Organizer

Kakeya sets are compact subsets of $\mathbb{R}^n$ that contain a unit line segment pointing in every direction and the Kakeya conjecture states that such sets must have Hausdorff dimension $n$. The property of stickiness was first discovered by by Katz-Laba-Tao in their 1999 breakthrough paper on the Kakeya problem. Then Wang-Zahl formalized the definition of a sticky Kakeya set as a subclass of general Kakeya sets in 2022.

Series
Time
for
Location
Speaker
Organizer

The Heisenberg projection problem asks whether there is an analogue of the Marstrand projection theorem in the first Heisenberg group, namely whether Hausdorff dimension of sets generically decreases under projection, for a natural family of projections arising from the group structure. This problem is still open, but I will discuss a recent improvement to the known bound obtained through a variable coefficient local smoothing inequality. 

 

Series
Time
for
Location
Speaker
Organizer

We will present advances on the boundedness of geometric maximal operators, focusing on a recent result from joint work with Paul Hagelstein and Alex Stokolos, which employs probabilistic techniques in the construction of Kakeya-type sets. The material presented extends ideas of M. Bateman and N. Katz.

Series
Time
for
Location
Speaker
Organizer

The `middle third integer Cantor set' consists of those integers which do not have a 2 in their base 3 representation. We will review and extend some results about such sets. For a general integer Cantor set K, with 0 as an allowed digit, it is known that K is intersective, a result of Furstenberg-Katznelson.

Series
Time
for
Location
Speaker
Organizer

We first investigate reproducing pairs in Hilbert spaces, with a focus on the discrete case. Reproducing pairs generalize frames and consist of two sequences $\Psi$ and $\Phi$, along with a bounded invertible operator $S_{\Psi,\Phi}$. The work examines sequences that are overcomplete by one element—that is, they become exact upon removal of a single element. A central result shows that if such a sequence admits a reproducing partner, the resulting exact subsequence must form a Schauder basis.

Series
Time
for
Location
Speaker
Organizer

In this thesis, we investigate three related problems at the intersection of analytic number theory and discrete harmonic analysis. Our primary goal is to understand discrete averaging operators over arithmetic sets—discrete analogues of classical continuous operators—and analyze their behavior using tools from harmonic analysis and additive combinatorics. The results deepen our understanding of how analytic and combinatorial techniques interact in the study of primes and other arithmetic structures.

Series
Time
for
Location
Speaker
Organizer

An important class of problems at the intersection of harmonic analysis and geometric measure theory asks how large the Hausdorff dimension of a set must be to ensure that it contains certain types of geometric point configurations. We apply these tools to study configurations associated to the problem of bounding the VC-dimension of a naturally arising class of indicator functions on fractal sets.

Series
Time
for
Location
Speaker
Organizer

For \( c\in(1,2) \) we consider the following operators
\[
\mathcal{C}_{c}f(x) \colon = \sup_{\lambda \in [-1/2,1/2)}
\bigg| \sum_{n \neq 0} f(x-n) \frac{e^{2\pi i\lambda \lfloor |n|^{c} \rfloor}}{n} \bigg|\text{,}
\]
\[
\mathcal{C}^{\mathsf{sgn}}_{c}f(x) \colon = \sup_{\lambda \in [-1/2,1/2)}
\bigg| \sum_{n \neq 0} f(x-n) \frac{e^{2\pi i\lambda \mathsf{sign}(n) \lfloor |n|^{c} \rfloor}}{n} \bigg| \text{,}
\]
and prove that both extend boundedly on \( \ell^p(\mathbb{Z}) \), \( p\in(1,\infty) \). 

Series
Time
for
Location
Speaker
Organizer

In 1992, Olson and Zalik conjectured that no system of translates can be a Schauder basis for L^2(R). This conjecture remains open as of the time of writing. Although some partial results regarding Olson-Zalik conjecture have been proved to be true, a characterization of subspaces of L^2(R) that do not admit a Schauder basis, or an unconditional basis is still unknown. 

Pages

Subscribe to RSS - Analysis