Analysis

Series
Time
for
Location
Speaker
Organizer

An important class of problems at the intersection of harmonic analysis and geometric measure theory asks how large the Hausdorff dimension of a set must be to ensure that it contains certain types of geometric point configurations. We apply these tools to study configurations associated to the problem of bounding the VC-dimension of a naturally arising class of indicator functions on fractal sets.

Series
Time
for
Location
Speaker
Organizer

For \( c\in(1,2) \) we consider the following operators
\[
\mathcal{C}_{c}f(x) \colon = \sup_{\lambda \in [-1/2,1/2)}
\bigg| \sum_{n \neq 0} f(x-n) \frac{e^{2\pi i\lambda \lfloor |n|^{c} \rfloor}}{n} \bigg|\text{,}
\]
\[
\mathcal{C}^{\mathsf{sgn}}_{c}f(x) \colon = \sup_{\lambda \in [-1/2,1/2)}
\bigg| \sum_{n \neq 0} f(x-n) \frac{e^{2\pi i\lambda \mathsf{sign}(n) \lfloor |n|^{c} \rfloor}}{n} \bigg| \text{,}
\]
and prove that both extend boundedly on \( \ell^p(\mathbb{Z}) \), \( p\in(1,\infty) \). 

Series
Time
for
Location
Speaker
Organizer

In 1992, Olson and Zalik conjectured that no system of translates can be a Schauder basis for L^2(R). This conjecture remains open as of the time of writing. Although some partial results regarding Olson-Zalik conjecture have been proved to be true, a characterization of subspaces of L^2(R) that do not admit a Schauder basis, or an unconditional basis is still unknown. 

Series
Time
for
Location
Speaker
Organizer

We develop a theory of Hilbert-space valued stochastic integration with respect to cylindrical martingale-valued measures. As part of our construction, we expand the concept of quadratic variation, to the case of cylindrical martingale-valued measures that are allowed to have discontinuous paths; this is carried out within the context of separable Banach spaces. Our theory of stochastic integration is applied to address the existence and uniqueness of solutions to stochastic partial differential equations in Hilbert spaces. 

Series
Time
for
Location
Speaker
Organizer

It is well known that  $H^2(\mathbb{D}^2)$ is a RKHS with the reproducing kernel $K( \lambda, z) = \frac{1}{(1-\overline{\lambda_1}z_1)(1 - \overline{\lambda_2}z_2)}$ and that for any submodule $M \subseteq H^2(\mathbb{D}^2)$ its reproducing kernel is $K^M( \lambda, z) = P_M K( \lambda, z)$ where $P_M$ is the orthogonal projection onto $M$. Associated with any submodule $M$ are the core function $G^M( \lambda, z) = \frac{K^M( \lambda, z)}{K( \lambda, z)}$ and the core operator $C_M$, an integral transform on $H^2(\mathbb{D}^2)$ with kernel function $G^M$.

Series
Time
for
Location
Speaker
Organizer

A classical Fefferman-Stein inequality relates the distributional estimate for a square function for a harmonic function u to a non-tangential maximal function of u.   We extend this ineuality to certain multiparameter settings, including the Shilov boundaries of tensor product domains, and the Heisenberg groups  with flag structure.

Series
Time
for
Location
Speaker
Organizer

I will review some recent results in the theory of differentiation of integrals.

Series
Time
for
Location
Speaker
Organizer

We prove that the planar Bochner Riesz mean converges almost everywhere for any L^p function in the optimal range, for 5/3

Series
Time
for
Location
Speaker
Organizer

Let $S^{2d-1}$ be the unit sphere in $\mathbb{R}^{2d}$, and $\sigma_{2d-1}$ the normalized spherical measure in $S^{2d-1}$. The (scale t) bilinear spherical average is given by 
$$\mathcal{A}_{t}(f,g)(x):=\int_{S^{2d-1}}f(x-ty)g(x-tz)\,d\sigma_{2d-1}(y,z).$$
There are geometric motivations to study bounds for such bilinear spherical averages, in connection to the study of some Falconer distance problem variants. Sobolev smoothing bounds for the operator 
$$\mathcal{M}_{[1,2]}(f,g)(x)=\sup_{t\in [1,2]}|\mathcal{A}_{t}(f,g)(x)|$$

Series
Time
for
Location
Speaker
Organizer

We go over some relevant history and related problems to motivate the study of the Carleson-Radon operator and the difficulty exhibiting in the planar case. Our main result confirms that the planar Carleson-Radon operator along homogenous curve with general monomial \(t^\alpha\) term modulation admits full range \(L^p\) bound assuming the natural non-resonant condition. In the talk, I'll provide a brief overview of the three key ingredients of the LGC based proof:

 

Pages

Subscribe to RSS - Analysis