We introduce the averages $K_N f (x) = \frac{1}{D(N)} \sum _{n \leq N} d(n) f(x+n)$, where $d(n)$ denotes the divisor function and $D(N) = \sum _{n=1} ^N d(n) $. We shall see that these averages satisfy a uniform, scale free, $\ell^p$-improving estimate for $p \in (1,2)$, that is
$$ \Bigl( \frac{1}{N} \sum |K_Nf|^{p'} \Bigl)^{1/p'} \leq C \Bigl(\frac{1}{N} \sum |f|^p \Bigl)^{1/p} $$
as long as $f$ is supported on the interval $[0,N]$.