Form methods are most efficient to prove generation theorems for semigroups but also for proving selfadjointness. So far those theorems are based on a coercivity notion which allows the use of the Lax-Milgram Lemma. Here we consider weaker "essential" versions of coerciveness which already suffice to obtain the generator of a semigroup S or a selfadjoint operator. We also show that one of these properties, namely essentially positive coerciveness implies a very special asymptotic behaviour of S, namely asymptotic compactness; i.e.
- You are here:
- Home