Let $f$ be defined on $\mathbb{Z}$. Let $A_N f$ be the average of $f$ along the square integers.
Brascamp-Lieb inequalities are estimates for certain multilinear forms on functions on Euclidean spaces. They generalize several classical inequalities, such as Hoelder's inequality or Young's convolution inequality. In this talk we consider singular Brascamp-Lieb inequalities, which arise when one of the functions in the Brascamp-Lieb inequality is replaced by a singular integral kernel. Examples include multilinear singular integral forms such as paraproducts or the multilinear Hilbert transform. We survey some results in the area.
Fine properties of spherical averages in the continuous setting include
$L^p$ improving estimates
and sparse bounds, interesting in the settings of a fixed radius, lacunary sets of radii, and the
full set of radii. There is a parallel theory in the setting of discrete spherical averages, as studied
by Elias Stein, Akos Magyar, and Stephen Wainger. We recall the continuous case, outline the
discrete case, and illustrate a unifying proof technique. Joint work with Robert Kesler, and
Dario Mena Arias.
Mathematicians have long been trying to understand which domains admit an orthogonal (or, sometimes, not) basis of exponentials of the form , for some set of frequencies (this is the spectrum of the domain). It is well known that we can do so for the cube, for instance (just take ), but can we find such a basis for the ball? The answer is no, if we demand orthogonality, but this problem is still open when, instead of orthogonality, we demand just a Riesz basis of exponentials.
If $f$ is a function supported on a truncated paraboloid, what can we say about $Ef$, the Fourier transform of f? Stein conjectured in the 1960s that for any $p>3$, $\|Ef\|_{L^p(R^3)} \lesssim \|f\|_{L^{\infty}}$.
We make a small progress toward this conjecture and show that it holds for $p> 3+3/13\approx 3.23$. In the proof, we combine polynomial partitioning techniques introduced by Guth and the two ends argument introduced by Wolff and Tao.