Analysis

Series
Time
for
Location
Speaker
Organizer
A set $\Omega\subset \mathbb{R}^d$ is called spectral if the space $L^2(\Omega)$ admits an orthogonal basis of exponential functions. Back in 1974 B. Fuglede conjectured that spectral sets could be characterized geometrically by their ability to tile the space by translations. Although since then the subject has been extensively studied, the precise connection between spectrality and tiling is still a mystery.>In the talk I will survey the subject and discuss some recent results, joint with Nir Lev, where we focus on the conjecture for convex polytopes.
Series
Time
for
Location
Speaker
Organizer

In joint work with J. Martinez-Garcia we study the classification problem of asymptotically log del Pezzo surfaces in algebraic geometry. This turns out to be equivalent to understanding when certain convex bodies in high-dimensions intersect the cube non-trivially. Beyond its intrinsic interest in algebraic geometry this classification is relevant to differential geometery and existence of new canonical metricsin dimension 4.

Series
Time
for
Location
Speaker
Organizer
Recently Bourgain and Dyatlov proved a fractal uncertainty principle (FUP), which roughly speaking says a function in $L^2(\mathbb{R})$ and its Fourier transform can not be simultaneously localized in $\delta$-dimensional fractal sets, $0<\delta<1$. In this talk, I will discuss a joint work with Schlag, where we obtained a higher dimensional version of the FUP. Our method combines the original approach by Bourgain and Dyatlov, in the more quantitative rendition by Jin and Zhang, with Cantan set techniques.
Series
Time
for
Location
Speaker
Organizer
This talk concerns two-variable rational inner functions phi with singularities on the two-torus T^2, the notion of contact order (and related quantities), and its various uses. Intuitively, contact order is the rate at which phi’s zero set approaches T^2 along a coordinate direction, but it can also be defined via phi's well-behaved unimodular level sets. Quantities like contact order are important because they encode information about the numerical stability of phi, for example when it belongs to Dirichlet-type spaces and when its partial
Series
Time
for
Location
Speaker
Organizer
The centerpiece of the subject of integral geometry, as conceived originally by Blaschke in the 1930s, is the principal kinematic formula (PKF). In rough terms, this expresses the average Euler characteristic of two objects A, B in general position in Euclidean space in terms of their individual curvature integrals. One of the interesting features of the PKF is that it makes sense even if A and B are not smooth enough to admit curvatures in the classical sense.
Series
Time
for
Location
Speaker
Organizer
In 1956, Busemann and Petty posed a series of questions about symmetric convex bodies, of which only the first one has been solved.Their fifth problem asks the following.Let K be an origin symmetric convex body in the n-dimensional Euclidean space and let H_x be a hyperplane passing through the origin orthogonal to a unit direction x. Consider a hyperplane G parallel to H_x and supporting to K and let C(K,x)=vol(K\cap H_x)dist (0, G). (proportional to the volume of the cone spanned by the secion and the support point).
Series
Time
for
Location
Speaker
Organizer

We will discuss several open problems concerning unique determination of convex bodies in the n-dimensional Euclidean space given some information about their projections or sectionson all sub-spaces of dimension n-1. We will also present some related results.

Series
Time
for
Location
Speaker
Organizer

In this talk we will discuss some some extremal problems for polynomials. Applications to the problems in discrete dynamical systems as well as in the geometric complex analysis will be suggested.

Series
Time
for
Location
Speaker
Organizer
Dynamical sampling is a new area in sampling theory that deals with signals that evolve over time under the action of a linear operator. There are lots of studies on various aspects of the dynamical sampling problem. However, they all focus on uniform discrete time-sets $\mathcal T\subset\{0,1,2,\ldots, \}$. In our study, we concentrate on the case $\mathcal T=[0,L]$. The goal of the present work is to study the frame property of the systems $\{A^tg:g\in\mathcal G, t\in[0,L] \}$. To this end, we also
Series
Time
for
Location
Speaker
Organizer
In this talk I will discuss the Mikhlin-H\"ormander multiplier theorem for $L^p$ boundedness of Fourier multipliers in which the multiplier belongs to a fractional Sobolev space with smoothness $s$. I will show that this theorem does not hold in the limiting case $|1/p - 1/2|=s/n$. I will also present a sharp variant of this theorem involving a space of Lorentz-Sobolev type. Some of the results presented in this talk were obtained in collaboration with Loukas Grafakos.

Pages

Subscribe to RSS - Analysis