Analysis

Series
Time
for
Location
Speaker
Organizer

This talk will be about connections between spectral problems for canonical systems and non-linear Fourier transforms (NLFTs). Non-linear Fourier transform is closely connected to Dirac systems, which form a subclass of canonical systems of differential equations. This connection allows one to find analogs of results on inverse spectral problems for canonical systems in the area of NLFT.

Series
Time
for
Location
Speaker
Organizer

The Fourier restriction conjecture and the Bochner-Riesz conjecture ask for Lebesgue space mapping properties of certain oscillatory integral operators. They both are central in harmonic analysis, are open in dimensions $\geq 3$, and notably have the same conjectured exponents. In the 1970s, H\"{o}rmander asked if a more general class of operators (known as H\"{o}rmander type operators) all satisfy the same $L^p$-boundedness as in the above two conjectures.

Series
Time
for
Location
Speaker
Organizer

This seminar has beeb cancelled and will be rescheduled next year.  We discuss a kind of weak type inequality for the Hardy-Littlewood maximal operator and Calderón-Zygmund singular integral operators that was first studied by Muckenhoupt and Wheeden and later by Sawyer. This formulation treats the weight for the image space as a multiplier, rather than a measure, leading to fundamentally different behavior.

Series
Time
for
Location
Speaker
Organizer

Weighted inequalities for singular integral operators are central in the study of non-homogeneous harmonic analysis. Two weight inequalities for singular integral operators, in-particular attracted attention as they can be essential in the perturbation theory of unitary matrices, spectral theory of Jacobi matrices and PDE's.

Series
Time
for
Location
Speaker
Organizer

Mobile sampling concerns finding surfaces upon which any function with Fourier transform supported in a symmetric convex set must have some large values.   We shall describe a sharp sufficient for mobile sampling in terms of the surface density introduced by Unnikrishnan and Vetterli.  Joint work with Mishko Mitkovski and Manasa Vempati.

Series
Time
for
Location
Speaker
Organizer

Given a discrete set $\Lambda\subseteq\mathbb{R}$ and an interval $I$, define the sequence of complex exponentials in $L^2(I)$, $\mathcal{E}(\Lambda)$, by $\{e^{2\pi i\lambda t}\colon \lambda\in\Lambda\}$.  A fundamental result in harmonic analysis says that if $\mathcal{E}(\frac{1}{b}\mathbb{Z})$ is an orthogonal basis for $L^2(I)$ for any interval $I$ of length $b$.  It is also well-known that there exist sets $\Lambda$, which may be irregular, such that sets $\mathcal{E}(\Lambda)$ form nonorthogonal bases (known as Riesz bases) for $L^2(S)$, for $S\subseteq\math

Series
Time
for
Location
Speaker
Organizer

We estimate the  Riesz basis (RB) bounds obtained in Hruschev, Nikolskii and Pavlov' s classical characterization of exponential RB. As an application, we  improve previously known estimates of the RB bounds in some classical cases, such as RB obtained by an Avdonin type perturbation, or RB which are the zero-set of sine-type functions. This talk is based on joint work with S. Nitzan

Series
Time
for
Location
Speaker
Organizer

Let $H$ be a separable Hilbert space and let $\{x_n\}$ be a Bessel sequence or a frame for $H$ which does not contain any zero elements. We say that $\{x_n\}$ is a normalizable Bessel sequence or normalizable frame if the normalized sequence $\{x_n/||x_n||\}$ remains a Bessel sequence or frame. In this talk, we will present characterizations of normalizable and non-normalizable frames . In particular, we prove that normalizable frames can only have two formulations.  Perturbation theorems tailored for normalizable frames will be also presented.

Contact Information

Series
Time
for
Location
Speaker
Organizer

 In 1996, C.~Heil, J.~Ramanatha, and P.~Topiwala conjectured that the (finite) set $\mathcal{G}(g, \Lambda)=\{e^{2\pi i b_k \cdot}g(\cdot - a_k)\}_{k=1}^N$ is linearly independent for any  non-zero square integrable function $g$ and  subset $\Lambda=\{(a_k, b_k)\}_{k=1}^N \subset \mathbb{R}^2.$ This problem is now known as the HRT Conjecture, and is still largely unresolved. 

 

Pages

Subscribe to RSS - Analysis