Suppose that $M$ is a closed isotropic Riemannian manifold and that $R_1,...,R_m$ generate the isometry group of $M$. Let $f_1,...,f_m$ be smooth perturbations of these isometries. We show that the $f_i$ are simultaneously conjugate to isometries if and only if their associated uniform Bernoulli random walk has all Lyapunov exponents zero. This extends a linearization result of Dolgopyat and Krikorian from $S^n$ to real, complex, and quaternionic projective spaces.
- You are here:
- Home