- You are here:
- Home
An important question in circle dynamics is regarding the absolute continuity of an invariant measure. We will consider orientation preserving circle homeomorphisms with break points, that is, maps that are smooth everywhere except for several singular points at which the first derivative has a jump. It is well known that the invariant measures of sufficiently smooth circle dieomorphisms are absolutely continuous w.r.t. Lebesgue measure. But in the case of homeomorphisms with break points the results are quite dierent.
Given a Hamiltonian system, normally hyperbolic invariant manifolds and their stable and unstable manifolds are important landmarks that organize the long term behaviour.
When the stable and unstable manifolds of a normally hyperbolic invarriant manifold intersect transversaly, there are homoclinic orbits that converge to the manifold both in the future and in the past. Actually, the orbits are asymptotic both in the future and in the past.
One can construct approximate orbits of the system by chainging several of these homoclinic excursions.
The purpose of this work is approximation of generic Hamiltonian dynamical systems by those with a finite number of islands. In this work, we will consider a Lemon billiard as our Hamiltonian dynamical system apparently with an infinitely many islands. Then, we try to construct a Hamiltonian dynamical system by deforming the boundary of our lemon billiard to have a finite number of islands which are the same or sub-islands of our original system. Moreover, we want to show elsewhere in the phase space of the constructed billiard is a chaotic sea.
In this talk I will present a proof of a generalization of a theorem by
Siegel, about the existence of an analytic conjugation between an
analytic map, $f(z)=\Lambda z +\hat{f}(z)$, and a linear map, $\Lambda
z$, in $\mathbb{C}^n$. This proof illustrates a standar technique used
to deal with small divisors problems. I will be following the work of E.
Zehnder. This is a continuation of last week talk.
In this talk I will present a proof of a generalization of a theorem by
Siegel, about the existence of an analytic conjugation between an
analytic map, $f(z)=\Lambda z +\hat{f}(z)$, and a linear map, $\Lambda
z$, in $\mathbb{C}^n$. This proof illustrates a standar technique used
to deal with small divisors problems. I will be following the work of E.
Zehnder. This is a continuation of last week talk.
In this talk I will present a proof of a generalization of a theorem by Siegel, about the existence of an analytic conjugation between an analytic map, $f(z)=\Lambda z +\hat{f}(z)$, and a linear map, $\Lambda z$, in $\mathbb{C}^n$. This proof illustrates a standar technique used to deal with small divisors problems. I will be following the work of E. Zehnder.
In this talk we will discuss the paper of McGehee titled "The stable manifold theorem via an isolating block," in which a proof of the theorem is made using only elementary topology of Euclidean spaces and elementary linear algebra.
I will discuss two topics in Dynamical Systems. A uniformly hyperbolic dynamical system preserving Borel probability measure μ is called fair dice like or FDL if there exists a finite Markov partition ξ of its phase space M such that for any integers m and j(i), 1 ≤ j(i) ≤ q one has μ ( C(ξ, j(0)) ∩ T^(-1) C(ξ, j(1)) ∩ ... ∩ T^(-m+1)C(ξ, j(m-1)) ) = q^(-m) where q is the number of elements in the partition ξ and C(ξ, j) is element number j of ξ.
Given a one-parameter family of maps of an interval to itself, one can observe period doubling bifurcations as the parameter is varied. The aspects of those bifurcations which are independent of the choice of a particular one-parameter family are called universal. In this talk we will introduce, heuristically, the so-called Feigenbaun universality and then we'll expose some rigorous results about it.
Some basic problems, notions and results of the Ergodic theory will be introduced. Several examples will be discussed. It is also a preparatory talk for the next day colloquium where finite time properties of dynamical and stochastic systems will be discussed rather than traditional questions all dealing with asymptotic in time properties.