In this talk we will discuss a shooting method designed for solving two point boundary value problems in a setting where a system has integrals of motion. We will show how it can be applied to obtain certain families of orbits in the circular restricted three body problem. These include transverse ejection/collisions from one primary body to the other, families of periodic orbits, orbits passing through collision, and orbits connecting fixed points to ejections or collisions.
I will describe my recent joint work with Jacob Bedrossian and Sam Punshon-Smith on the formation of small scales in passively-advected scalars being mixed by a fluid evolving by the Navier-Stokes equation. Our main result is a confirmation of Batchelor's law, a power-law for the spectral density of a passively advected scalar in the so-called Batchelor regime of infinite Schmidt number.
I will start with a physical toy model to introduce billiards/open billiards, which describe the dynamics of a particle in a compact manifold/in a particular open area of this manifold.
One of the main questions of open billiards is Poisson approximations. It describes the asymptotic behavior of the dynamics in statistical distributions. I will define it for billiards systems.
Series
Time
for
Location
Speaker
Organizer
Different ways have been introduced to define intermittency in the theory of turbulence, like for example the non-gaussianity, the lack of self-similarity or the deviation of the theory of turbulence by Kolmogorov from 1941.