Dynamical Systems

Series
Time
for
Location
Speaker
Organizer

https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09

In this talk we will discuss a shooting method designed for solving two point boundary value problems in a setting where a system has integrals of motion. We will show how it can be applied to obtain certain families of orbits in the circular restricted three body problem. These include transverse ejection/collisions from one primary body to the other, families of periodic orbits, orbits passing through collision, and orbits connecting fixed points to ejections or collisions.

Series
Time
for
Location
Speaker
Organizer

https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09

Series
Time
for
Location
Speaker
Organizer

https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09

Series
Time
for
Location
Speaker
Organizer

I will describe my recent joint work with Jacob Bedrossian and Sam Punshon-Smith on the formation of small scales in passively-advected scalars being mixed by a fluid evolving by the Navier-Stokes equation. Our main result is a confirmation of Batchelor's law, a power-law for the spectral density of a passively advected scalar in the so-called Batchelor regime of infinite Schmidt number.

Series
Time
for
Location
Speaker
Organizer

https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09

Series
Time
for
Location
Speaker
Organizer

https://gatech.zoom.us/j/95197085752?pwd=WmtJUVdvM1l6aUJBbHNJWTVKcVdmdz09

Series
Time
for
Location
Speaker
Organizer

Abstract: This talk has 4 or 5 parts

  1. I will start with a physical toy model to introduce billiards/open billiards, which describe the dynamics of a particle in a compact manifold/in a particular open area of this manifold.

  2. One of the main questions of open billiards is Poisson approximations. It describes the asymptotic behavior of the dynamics in statistical distributions.  I will define it for billiards systems.

Series
Time
for
Location
Speaker
Organizer

Different ways have been introduced to define intermittency in the theory of turbulence, like for example the non-gaussianity, the lack of self-similarity or the deviation of the theory of turbulence by Kolmogorov from 1941.

Series
Time
for
Location
Speaker
Organizer

Suppose that $M$ is a closed isotropic Riemannian manifold and that $R_1,...,R_m$ generate the isometry group of $M$. Let $f_1,...,f_m$ be smooth perturbations of these isometries. We show that the $f_i$ are simultaneously conjugate to isometries if and only if their associated uniform Bernoulli random walk has all Lyapunov exponents zero. This extends a linearization result of Dolgopyat and Krikorian from $S^n$ to real, complex, and quaternionic projective spaces.

Pages

Subscribe to RSS - Dynamical Systems