Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

I'll talk about some 2D billiards, the most visual class of dynamical systems, where orbits (rays) move along straight lines within a billiard table with elastic reflections off the boundary.  Elliptic flowers are built “around" convex polygons, and the boundary of corresponding billiard tables consists of the arcs of ellipses.

Series
Time
for
Location
Speaker
Organizer

One of the most interesting and surprising features of manifold topology is the existence of topological 4-manifold that admit infinitely many smooth structures. In these talks I will discuss what is known about these “exotic” smooth structures on open manifolds, starting with R^4 and then moving on to other open 4-manifolds. We will also go over various constructions and open questions about these manifolds.  

Series
Time
for
Location
Speaker
Organizer

One of the most interesting and surprising features of manifold topology is the existence of topological 4-manifold that admit infinitely many smooth structures. In these talks I will discuss what is known about these “exotic” smooth structures on open manifolds, starting with R^4 and then moving on to other open 4-manifolds. We will also go over various constructions and open questions about these manifolds.  

Series
Time
for
Location
Speaker
Organizer

There exist many different diagrammatic descriptions of 4-manifolds, with the usual claim that "such and such a diagram uniquely determines a smooth 4-manifold up to diffeomorphism". This raises higher order questions: Up to what diffeomorphism? If the same diagram is used to produce two different 4-manifolds, is there a diffeomorphism between them uniquely determined up to isotopy? Are such isotopies uniquely determined up to isotopies of isotopies?

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

TBA

Series
Time
for
Location
Speaker
Organizer

After an introduction to how to think about the mapping class groupand its cohomology, I will discuss a recent theorem of mine saying
that passing to the level-l subgroup does not change the rational cohomology in a stable range.

Series
Time
for
Location
Speaker
Organizer

We will introduce an analogue of big mapping class groups as defined by Algom-Kfir and Bestvina which hopes to answer the question: What is “Big Out(Fn)”? This group will consist of proper homotopy classes of proper homotopy equivalences of locally finite, infinite graphs. We will then discuss some classification theorems related to the coarse geometry of these groups. This is joint work with Hannah Hoganson and Sanghoon Kwak.

Series
Time
for
Location
Speaker
Organizer

 In this talk, I will talk about the (geometric) intersection number between closed geodesics on finite volume hyperbolic surfaces. Specifically, I will discuss the optimum upper bound on the intersection number in terms of the product of hyperbolic lengths. I also talk about the equidistribution of the intersection points between closed geodesics.

Series
Time
for
Location
Speaker
Organizer

Given a symplectic 4 manifold and a contact 3 manifold, it is natural to ask whether the latter embeds in the former as a contact type hypersurface. We explore this question for CP^2 and lens spaces. We will discuss a construction of small symplectic caps, using ideas first laid out by Gay in 2002, for rational homology balls bounded by lens spaces. This allows us to explicitly understand embeddings of these rational balls in CP2 that were earlier understood only through almost toric fibrations.

Pages

Subscribe to RSS - Geometry and Topology