Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

In this talk, we will discuss the construction of exotic 4-manifolds using Lefschetz fibrations over S^2, which are obtained by finite order cyclic group actions on Σg. We will first apply various cyclic group actions on Σg for g>0, and then extend it diagonally to the product manifolds ΣgxΣg. These will give singular manifolds with cyclic quotient singularities. Then, by resolving the singularities, we will obtain families of Lefschetz fibrations over S^2.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

Link Floer homology is a powerful invariant of links due to Ozsváth and Szabó. One of its most striking properties is that it detects each link's Thurston norm, a result also due to Ozsváth and Szabó. In this talk I will discuss generalizations of this result to the context of 4-ended tangles, as well as some tangle detection results. This is joint work in progress with Subhankar Dey and Claudius Zibrowius.

Series
Time
for
Location
Speaker
Organizer

We give an overview of Teichmuller theory, the deformation theory of Riemann surfaces. The richness of the subject comes from all the perspectives one can take on Riemann surfaces: complex analytic for sure, but also Riemannian, topological, dynamical and algebraic.  In the past 40 years or so, interest has erupted in an extension of Teichmuller theory, here thought of as a component of the character variety of surface group representations into PSL(2,\R), to the study of the character variety of surface group representations into higher rank Lie groups (e.g.

Series
Time
for
Location
Speaker
Organizer

We give an overview of Teichmuller theory, the deformation theory of Riemann surfaces. The richness of the subject comes from all the perspectives one can take on Riemann surfaces: complex analytic for sure, but also Riemannian, topological, dynamical and algebraic.  In the past 40 years or so, interest has erupted in an extension of Teichmuller theory, here thought of as a component of the character variety of surface group representations into PSL(2,\R), to the study of the character variety of surface group representations into higher rank Lie groups (e.g.

Series
Time
for
Location
Speaker
Organizer

TBA

Series
Time
for
Location
Speaker
Organizer

In the past few years there have been a host of remarkable topological results arising from considering "real" versions of various gauge and Floer-theoretic invariants of three- and four-dimensional manifolds equipped with involutions.

Series
Time
for
Location
Speaker
Organizer

The Khovanov-Rozansky skein lasagna module was introduced by Morrison-Walker-Wedrich as an invariant of 4-manifold with a framed oriented link in the boundary. I will discuss an extension of the skein lasagna theory to 4-manifolds with codimension 2 corners, and its behavior under gluing. I will also talk about a categorical framework for computing skein lasagna modules of closed 4-manifolds via trisection, as well as an extended 4d TQFT based on skein lasagna theory. This is joint work with Sarah Blackwell and Slava Krushkal.

 

Series
Time
for
Location
Speaker
Organizer

TBA

Series
Time
for
Location
Speaker
Organizer

Heegaard Floer homology is a tool for studying three- and four-dimensional manifolds, using methods that are inspired by symplectic geometry. Bordered Floer homology is tool, currently under construction, for understanding how to reconstruct the Heegaard Floer homology in terms of invariants associated to its pieces. This approach has both conceptual and computational ramifications. In this talk, I will sketch the outlines of Heegaard Floer homology, with an emphasis on recent progress in bordered Floer homology.

Pages

Subscribe to RSS - Geometry and Topology