Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

We will start by introducing the Teichmüller space of a surface, which parametrizes the possible conformal structures it supports. By defining this space analytically, we can equip it with the Lp metrics, of which the Teichmüller and Weil-Petersson metrics are special cases. We will discuss the incompleteness of the Lp metrics on Teichmüller space and what we know about their completions.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

We show that in Cartan-Hadamard manifolds M^n, n≥ 3, closed infinitesimally convex hypersurfaces S bound convex flat regions, if curvature of M^n vanishes on tangent planes of S. This encompasses Chern-Lashof characterization of convex hypersurfaces in Euclidean space, and some results of Greene-Wu-Gromov on rigidity of Cartan-Hadamard manifolds. It follows that closed simply connected surfaces in M^3 with minimal total absolute curvature bound Euclidean convex bodies, as stated by M. Gromov in 1985.

Series
Time
for
Location
Speaker
Organizer

Fintushel and Stern’s knot surgery constructions has been a central source of exotic 4-manifolds since its introduction in 1997. In the simply connected setting, it is known that there are also embedded corks in knot-surgered manifolds whose twists undo the knot surgery. This has been known abstractly since the construction was first given, but the explicit corks and embeddings have remained elusive.

Series
Time
for
Location
Speaker
Organizer

I will discuss a mixture of results and conjectures related to the Khovanov homology and Knot Floer homology for ribbon knots. We will explore relationships with fusion numbers (a measure of complexity on ribbon disks) and particular families of symmetric unions (ribbon knots given by particular diagrams). This is joint work with Nathan Dunfield, Sherry Gong, Tom Hockenhull, and Marco Marengon.

Series
Time
for
Location
Speaker
Organizer

Locally conformal symplectic (LCS) geometry is a variant of symplectic geometry in which the symplectic form is locally only defined up to positive scale. For example, for the symplectization R x Y of a contact manifold Y, translation in the R direction are symplectomorphisms up to scale, and hence the quotient (R/Z) x Y is naturally an LCS manifold. The importation of symplectic techniques into LCS geometry is somewhat subtle because of this ambiguity of scale.

Series
Time
for
Location
Speaker
Organizer

In 2016, Hutchings introduced a knot filtration on the embedded contact homology (ECH) chain complex in order to estimate the linking of periodic orbits of the Reeb vector field, with an eye towards applications to dynamics on the disk. Since then, the knot filtration has been computed for certain lens spaces by myself, and the "action-linking" relationship has been studied for generic contact forms on general three-manifolds by Bechara Senior-Hryniewicz-Salomao.

Series
Time
for
Location
Speaker
Organizer

I will survey recent progress toward Khovanov homology for links in general 3-manifolds based on categorification of $q$-series invariants labeled by Spin$^c$ structures. Much of the talk will focus on the $q$-series invariants themselves. In particular, I hope to explain how to compute them for a general 3-manifold and to describe some of their properties, e.g. relation to other invariants labeled by Spin or Spin$^c$ structures, such as Turaev torsion, Rokhlin invariants, and the "correction terms'' of the Heegaard Floer theory.

Series
Time
for
Location
Speaker
Organizer

I will discuss recent work with K. Honda and Y. Huang on proving the Giroux correspondence between contact structures and open book decompositions. Though our work extends to all dimensions (with appropriate adjectives), this talk will focus on the 3-dimensional proof. I will first recall Giroux’s argument for existence of supporting open book decompositions, formulating it in the language adapted to our proof. The rest of the talk will be spent describing the proof of the stabilization correspondence.

Series
Time
for
Location
Speaker
Organizer

The study of contact and symplectic manifolds has relied heavily on understanding Legendrian and Lagrangian submanifolds in them -- both for constructing the manifolds using these submanifolds, and for computing invariants of the ambient space in terms of invariants of the submanifolds. This thesis explores the construction of Legendrian submanifolds in high dimensional contact manifolds (greater than 3) in two directions.

Pages

Subscribe to RSS - Geometry and Topology