Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

We revisit the classical problem of constructing a developable surface along a given Frenet curve $\gamma$ in space. First, we generalize a well-known formula, introduced in the literature by Sadowsky in 1930, for the Willmore energy of the rectifying developable of $\gamma$ to any (infinitely narrow) flat ribbon along the same curve. Then we apply the direct method of the calculus of variations to show the existence of a flat ribbon along $\gamma$ having minimal bending energy. Joint work with Simon Blatt.

Series
Time
for
Location
Speaker
Organizer

In 1976, Thurston decidedly showed that symplectic geometry and Kähler geometry were strictly distinct by providing the first example of a compact symplectic manifold which is not symplectomorphic to any Kähler manifold. Since this example, first studied by Kodaira, much work has been done in explicating the difference between algebraic manifolds such as affine and projective varieties, complex manifolds such as Stein and Kähler manifolds, and general symplectic manifolds.

Series
Time
for
Location
Speaker
Organizer

There are many bizarre examples in the world of smooth 4-manifolds. We will describe some of these examples and discuss a tool from gauge theory that may be used to compute some of the invariants that distinguish these weird examples.

Series
Time
for
Location
Speaker
Organizer

Thompson links are links arising from elements of the Thompson group. They were introduced by Vaughan Jones as part of his effort to construct a conformal field theory for every finite index subfactor. In this talk I will first talk about Jones' construction of Thompson links. Then I will talk about grid diagrams and introduce a notion of half grid diagrams to give an equivalent construction of Thompson links and further associate with each Thompson link a canonical Legendrian type.

Series
Time
for
Location
Speaker
Organizer

A fundamental result in 3-dimensional contact topology due to Ding-Geiges tells us that any contact 3-manifold can be obtained via doing a surgery on a Legendrian link in the standard contact 3-sphere. So it's natural to ask how simple or complicated a surgery diagram could be for a given contact manifold? Contact surgery number is a measure of  this complexity. In this talk, I will discuss this notion of complexity along with some examples. This is joint work with Marc Kegel.

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them.

Series
Time
for
Location
Speaker
Organizer

I read Benoist's paper Convexes Divisibles IV (2006, Invent. Math.), and will talk about it. The main result is a striking structural theorem for triangles in the boundaries of 3-dimensional properly convex divisible domains O that are not strictly convex (which exist). These bound "flats" in O. Benoist shows that every Z^2 subgroup of the group G preserving O preserves a unique such triangle. Conversely, all such triangles are disjoint and any such triangle descends to either a torus or Klein bottle in the quotient M = O/G (and so must have many symmetries!).

Series
Time
for
Location
Speaker
Organizer

Clifford algebra was first developed to describe Maxwell's equations, but the subject has found applications in quantum mechanics, computer graphics, robotics, and even machine learning, way beyond its original purpose. In topology and geometry, Clifford algebra appears in the proofs of the celebrated Atiyah-Singer Index Theorem and Bott Periodicity; it is fundamental to the understanding of spin structures on Riemannian manifolds. Despite its algebraic nature, it somehow gives us the power to understand and manipulate geometry.

Series
Time
for
Location
Speaker
Organizer

The goal of this talk is to explore curve graphs, which are combinatorial tools that encode topological information about surfaces. We focus on variants of the fine curve graph of a surface. The fine curve graph has its vertices essential simple closed curves on the surface and its edges connect pairs of curves that are disjoint.

Pages

Subscribe to RSS - Geometry and Topology