Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

Legendrian knots are an important kind of knot in contact topology. One of their invariants,  the Thurston-Bennequin number, has an upper bound for any given knot type, called max-tb. Using convex surface theory, we will compute the max-tb of positive torus knots and show that two max-tb positive torus knots are Legendrian isotopic. If time permits, we will show that any non max-tb positive torus knot is obtained from the unique max-tb positive torus knot by a sequence of stabilizations. 

Series
Time
for
Location
Speaker
Organizer

Mapping class groups of surfaces in general have cohomology that is hard to compute. Meanwhile, within something called the cohomologically-stable range, a family of characteristic classes called the MMM classes (of surface bundles) is enough to generate this cohomology and thus plays an important role for understanding both the mapping class group and surface bundles. Moreover, constructing the so-called Atiyah-Kodaira manifold provides the setting to prove that these MMM classes are non-trivial.

Series
Time
for
Location
Speaker
Organizer

In this talk, we will give background on Lefschetz fibrations and their relationship to symplectic 4-manifolds. We will then discuss results on their fundamental groups. Genus-2 Lefschetz fibrations are of particular interest because of how much we know and don't know about them. We will see what fundamental groups a genus-2 Lefschetz fibration can have and what questions someone might ask when studying these objects.

Series
Time
for
Location
Speaker
Organizer

Morse theory analyzes the topology of a smooth manifold by studying the behavior of its real-valued functions. From this, one obtains a well-behaved homology theory which provides further information about the manifold and places constraints on the smooth functions it admits. This idea has proven to be useful in approaching topological problems, playing an essential role in Smale's solution to the generalized Poincare conjecture in dimensions greater than 4.

Series
Time
for
Location
Speaker
Organizer

This talk will include background information on contact structures and open book decompositions of 3-manifolds and the relationship between them. I will state the necessary definitions and include a number of concrete examples. I will also review some convex surface theory, which is the tool used in the main talk to investigate the contact structure – open book relationship.

Series
Time
for
Location
Speaker
Organizer

Surface bundles lie in the intersection of many areas of math: algebraic topology, 2–4 dimensional topology, geometric group theory, algebraic geometry, and even number theory! However, we still know relatively little about surface bundles, especially compared to vector bundles. In this interactive talk, I will present the general (and beautiful) fiber bundle theory, including characteristic classes, as a starting point, and you the audience will get to specialize the general theory to surface bundles, with rewards!

Series
Time
for
Location
Speaker
Organizer

Elliptic surfaces are some of the most well-behaved families of smooth, simply-connected four-manifolds from the geometric and analytic perspective. Many of their smooth invariants are easily computable and they carry a fibration structure which makes it possible to modify them by various surgical operations. However, elliptic surfaces have large Euler characteristics which means even their simplest handle-decompositions appear to be quite complicated.

Series
Time
for
Location
Speaker
Organizer

You are probably familiar with the concept of a knot in 3 space: a tangled string that can't be pushed and pulled into an untangled one. We briefly show how to prove mathematical knots are in fact knotted, and discuss some conditions which guarantee unknotting. We then give explicit examples of knotted 2-spheres in 4 space, and discuss 2-sphere version of the familiar theorems. A large part of the talk is practice with visualizing objects in 4 dimensional space. We will also prove some elementary facts to give a sense of what working with these objects feels like.

Series
Time
for
Location
Speaker
Organizer

A CAT(0) space is a geodesic metric space where triangles are thinner than comparison triangles in a Euclidean plane. Prime examples of CAT(0) spaces are Cartan-Hadamard manifolds: complete simply connected Riemannian spaces with nonpositive curvature, which include Euclidean and Hyperbolic space as special cases. The triangle condition ensures that every pair of points in a CAT(0) space can be connected by a unique geodesic. A subset of a CAT(0) space is convex if it contains the geodesic connecting every pair of its points.

Series
Time
for
Location
Speaker
Organizer

This talk will give an elementary introduction to my joint work with Kyler Siegel that shows how cuspidal curves in a symplectic manifold X such as the complex projective plane determine when an ellipsoid can be symplectically embedded into X.

Pages

Subscribe to RSS - Geometry and Topology