Locally conformal symplectic (LCS) geometry is a variant of symplectic geometry in which the symplectic form is locally only defined up to positive scale. For example, for the symplectization R x Y of a contact manifold Y, translation in the R direction are symplectomorphisms up to scale, and hence the quotient (R/Z) x Y is naturally an LCS manifold. The importation of symplectic techniques into LCS geometry is somewhat subtle because of this ambiguity of scale.
- You are here:
- Home