Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

Virtual knot theory is a variant of classical knot theory in which one allows a new type of crossing called a "virtual" crossing. It was originally developed by Louis Kauffman in order to study the Jones polynomial but has since developed into its own field and has genuine significance in low dimensional topology. One notable interpretation is that virtual knots are equivalent to knots in thickened surfaces. In this talk we'll introduce virtual knots and show why they are a natural extension of classical knots.

Series
Time
for
Location
Speaker
Organizer

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them.

Series
Time
for
Location
Speaker
Organizer

This series of talks will discuss connections between Riemannian geometry and contact topology. Both structures have deep connections to the topology of 3-manifolds, but there has been little study of the interactions between them (at least the implications in contact topology). We will see that there are interesting connections between curvature and properties of contact structures. The talks will give a brief review of both Riemannian geometry and contact topology and then discuss various was one might try to connect them.

Series
Time
for
Location
Speaker
Organizer

This talk has two goals. The first is to talk through Keynes-Newton’s construction of minimal non-uniquely ergodic interval exchange transformations. The second is to explain why I’m talking about this in the student topology seminar.

Series
Time
for
Location
Speaker
Organizer

The curve graph provides a combinatorial perspective to study surfaces. Classic work of Ivanov showed that the automorphisms of this graph are naturally isomorphic to the mapping class group. By dropping isotopies, more recent work of Long-Margalit-Pham-Verberne-Yao shows that there is also a natural isomorphism between the automorphisms of the fine curve graph and the homeomorphism group of the surface. Restricting this graph to smooth curves might appear to be the appropriate object for the diffeomorphism group, but it is not.

Series
Time
for
Location
Speaker
Organizer

When studying symplectic 4-manifolds, it is useful to consider Lefschetz fibrations over the 2-sphere due to their one-to-one correspondence uncovered by Freedman and Gompf. Lefschetz fibrations of genera 0 and 1 are well understood, but for genera greater than or equal to 2, much less is known. However, some Lefschetz fibrations with monodromies that respect the hyperelliptic involution of a genus-g surface have stronger properties which make their invariants easier to compute.

Series
Time
for
Location
Speaker
Organizer

I will talk about various notions of equivalence for manifolds and morphisms and the relationships between them. Questions, interruptions, and detours are strongly encouraged! 

Series
Time
for
Location
Speaker
Organizer

The fine curve graph of a surface is a graph whose vertices are essential simple closed curves in the surface and whose edges connect disjoint curves. Following a rich history of hyperbolicity in various graphs based on surfaces, the fine curve was shown to be hyperbolic by Bowden–Hensel–Webb. Given how well-studied the curve graph and the case of “up to isotopy” is, we ask: what about the mysterious part of the fine curve graph not captured by isotopy classes?

Series
Time
for
Location
Speaker
Organizer

The concept of holonomy arises in many areas of mathematics, especially control theory. This concept is also related to the broader program of geometrization of forces in physics. In order to understand holonomy, we need to understand principal (fiber) bundles. In this talk I will explain U(1)-principal bundles by example. This explanation will be from the point-of-view of a geometer, but I will introduce the terminology of control theory. Finally, we will do a holonomy computation for a famous example of Aharonov and Bohm.

Series
Time
for
Location
Speaker
Organizer

In dimension 4, there exist simply connected manifolds which are homeomorphic but not diffeomorphic; the difference between the distinct smooth structures can be localized using corks. Similarly, there exist diffeomorphisms of simply connected 4-manifolds which are topologically but not smoothly isotopic to the identity. In this talk, I will discuss some preliminary results towards an analogous localization of this phenomena using corks for diffeomorphisms. This project is joint work with Slava Krushkal, Anubhav Mukherjee, and Mark Powell.

Pages

Subscribe to RSS - Geometry and Topology