Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

Surface bundles lie in the intersection of many areas of math: algebraic topology, 2–4 dimensional topology, geometric group theory, algebraic geometry, and even number theory! However, we still know relatively little about surface bundles, especially compared to vector bundles. In this interactive talk, I will present the general (and beautiful) fiber bundle theory, including characteristic classes, as a starting point, and you the audience will get to specialize the general theory to surface bundles, with rewards!

Series
Time
for
Location
Speaker
Organizer

Elliptic surfaces are some of the most well-behaved families of smooth, simply-connected four-manifolds from the geometric and analytic perspective. Many of their smooth invariants are easily computable and they carry a fibration structure which makes it possible to modify them by various surgical operations. However, elliptic surfaces have large Euler characteristics which means even their simplest handle-decompositions appear to be quite complicated.

Series
Time
for
Location
Speaker
Organizer

You are probably familiar with the concept of a knot in 3 space: a tangled string that can't be pushed and pulled into an untangled one. We briefly show how to prove mathematical knots are in fact knotted, and discuss some conditions which guarantee unknotting. We then give explicit examples of knotted 2-spheres in 4 space, and discuss 2-sphere version of the familiar theorems. A large part of the talk is practice with visualizing objects in 4 dimensional space. We will also prove some elementary facts to give a sense of what working with these objects feels like.

Series
Time
for
Location
Speaker
Organizer

A CAT(0) space is a geodesic metric space where triangles are thinner than comparison triangles in a Euclidean plane. Prime examples of CAT(0) spaces are Cartan-Hadamard manifolds: complete simply connected Riemannian spaces with nonpositive curvature, which include Euclidean and Hyperbolic space as special cases. The triangle condition ensures that every pair of points in a CAT(0) space can be connected by a unique geodesic. A subset of a CAT(0) space is convex if it contains the geodesic connecting every pair of its points.

Series
Time
for
Location
Speaker
Organizer

This talk will give an elementary introduction to my joint work with Kyler Siegel that shows how cuspidal curves in a symplectic manifold X such as the complex projective plane determine when an ellipsoid can be symplectically embedded into X.

Series
Time
for
Location
Speaker
Organizer

In her thesis, Maryam Mirzakhani counted the number of simple closed geodesics of bounded length on a (real) hyperbolic surface. This breakthrough theorem and the subsequent explosion of related results use techniques and draw inspiration from Teichmüller theory, symplectic geometry, surface topology, and homogeneous dynamics. In this talk, I’ll discuss some of these connections and a qualitative strengthening of her theorem, describing what these curves, and their complements, actually (generically) look like. This is joint work with Francisco Arana-Herrera.

Series
Time
for
Location
Speaker
Organizer

In the early 80's, Freedman discovered that the Whitney trick could be performed in 4-dimensions which quickly led to a complete classification of closed, simply connected topological 4-manifolds. With gauge theory, Donaldson showed that 4-manifolds differ greatly from their higher dimensional counterparts which uncovered the stark differences between topological and smooth results in dimension 4. In this introductory talk, we will give a brief overview this classification and why dimension 4 is so unique.

Series
Time
for
Location
Speaker
Organizer

The Burau representation is a kind of homological representation of braid groups that has been around for around a century. It remains mysterious in many ways and is of particular interest because of its relation to quantum invariants of knots and links such as the Jones polynomial. In recent work, I came across a relationship between this representation and a moduli space of Euclidean cone metrics on spheres (think e.g. convex polyhedra) first examined by Thurston.

Series
Time
for
Location
Speaker
Organizer

This talk will be an introduction to the theory of surfaces, some tools we use to study surfaces, and some uses of surfaces in "real life". In particular, we will discuss the mapping class group and the curve complex. This talk will be aimed at an audience with a minimal background in low-dimensional topology. 

Series
Time
for
Location
Speaker
Organizer

The fine curve graph of a surface S was introduced by Bowden–Hensel–Webb in 2019 to study the diffeomorphism group of S. We consider a variant of this graph, called the fine 1-curve graph, whose vertices are essential simple closed curves and edges connect curves that intersect in at most one point. Building on the works of Long–Margalit–Pham–Verberne–Yao and Le Roux–Wolff, we show that the automorphism group of the fine 1-curve graph is isomorphic to the homeomorphism group of S. This is joint work with Katherine W. Booth and Daniel Minahan.

Pages

Subscribe to RSS - Geometry and Topology