Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties (e.g. tightness, fillability, vanishing or non-vanishing of various Floer or symplectic homology classes) of contact structures are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. The case of positive contact surgeries much more subtle.

Series
Time
for
Location
Speaker
Organizer

Braid groups are relatively simple to describe, but they have deep and intricate connections to many different areas of math. We will discuss three specific instances where the braid group on 3 strands arises in geometry and knot theory. In exploring connections between these perspectives, we will take a detour into the world of elliptic curves and their moduli space. As a result, we will see that these three perspectives are actually the same. Time permitting, we will explore generalizations of this to the braid group on n strands for n > 3.

Series
Time
for
Location
Speaker
Organizer

The Johnson filtration is a filtration of the mapping class group induced by the action of the mapping class group on the lower central series of the fundamental group of a surface.  A theorem of Johnson tells us that the first term of this filtration, called the Torelli group, is finitely generated for surfaces of genus at least 3.  We will explain work of Ershov—He and Church—Ershov—Putman, which uses Johnson's result to show that the kth term of the Johnson filtration is finitely generated for surfaces of genus g at least 2k - 1.  Time permitting, we will also d

Series
Time
for
Location
Speaker
Organizer

This will be an introduction to Legendrian contact homology (LCH), a version of Floer homology that's important in contact topology, for the setting of Legendrian knots in R^3 with the standard contact structure. LCH is the homology of a differential graded algebra that can be defined combinatorially in terms of a diagram for the knot. We'll explore this combinatorial definition, with examples, and discuss some auxiliary invariants derived from LCH. No background about contact manifolds or Legendrian knots will be assumed.

Series
Time
for
Location
Speaker
Organizer

For the past 25 years, a key player in contact topology has been the Floer-theoretic invariant called Legendrian contact homology. I'll discuss a package of new invariants for Legendrian knots and links that builds on Legendrian contact homology and is derived from rational symplectic field theory. This includes a Poisson bracket on Legendrian contact homology and a symplectic structure on augmentation varieties. Time permitting, I'll also describe an unexpected connection to cluster theory for a family of Legendrian links associated to positive braids.

Series
Time
for
Location
Speaker
Organizer

Abstract: Fundamental to our understanding of Teichm\"uller space T(S) of a closed oriented genus $g \geq 2$ surface S are two different perspectives: one as connected  component in the  PSL(2,\R) character variety  \chi(\pi_1S, PSL(2,\R)) and one as the moduli space of marked hyperbolic structures on S. The latter can be thought of as a moduli space of (PSL(2,\R), \H^2) -structures. The G-Hitchin component, denoted Hit(S,G), for G a split real simple Lie group, is a connected component in \chi(\pi_1S, G) that is a higher rank generalization of T(S).

Series
Time
for
Location
Speaker
Organizer

A sequence of remarkable results in recent decades have shown that for a surface group H there are many Lie groups G and connected components C of Hom(H,G) consisting of discrete and faithful representations. These are known as higher Teichmüller spaces. With two exceptions, all known constructions of higher Teichmüller spaces work only for surface groups. This is an expository talk on the remarkable paper Convexes Divisibles III (Benoist ‘05), in which the first construction of higher Teichmüller spaces that works for some non-surface-groups was discovered.

Series
Time
for
Location
Speaker
Organizer

 This talk is a summary of a summary. We will be going over Jen Hom's 2024 Levi L. Conant Prize Winning Article "Getting a handle on the Conway knot," which discusses Lisa Piccirillo's renowned 2020 paper proving the Conway knot is not slice. In this presentation, we will go over what it means for a knot to be slice, past attempts to classify the Conway knot with knot invariants, and Piccirillo's approach of constructing a knot with the same knot trace as the Conway knot.

Series
Time
for
Location
Speaker
Organizer

Vassiliev knot invariants, or finite-type invariants, are a broad class of knot invariants resulting from extending usual invariants to knots with transverse double points. We will show that the Conway and Jones polynomials are fully described by Vassiliev invariants. We will discuss the fundamental theorem of Vassiliev invariants, relating them to the algebra of chord diagrams and weight systems. Time permitting, we will also discuss the Kontsevich integral, the universal Vassiliev invariant.

Series
Time
for
Location
Speaker
Organizer

Legendrian knots are an important kind of knot in contact topology. One of their invariants,  the Thurston-Bennequin number, has an upper bound for any given knot type, called max-tb. Using convex surface theory, we will compute the max-tb of positive torus knots and show that two max-tb positive torus knots are Legendrian isotopic. If time permits, we will show that any non max-tb positive torus knot is obtained from the unique max-tb positive torus knot by a sequence of stabilizations. 

Pages

Subscribe to RSS - Geometry and Topology