Geometry and Topology

Series
Time
for
Location
Speaker
Organizer

This series will tie together algebraic, complex analytic, symplectic, and contact geometries together in one coherent story. This will be done via the study of a series of couplets from different fields of geometry:

Algebraic manifolds:
Affine and quasi-projective varieties (non-compact models)
Projective varieties (compact models)

Complex manifolds:
Stein manifolds
Stein compactifications

Symplectic manifolds:
Liouville/ Weinstein geometry
Compact Kahler manifolds 

Series
Time
for
Location
Speaker
Organizer

One of the first results on concordance was a condition on the Alexander polynomials of slice knots, now known as the Fox-Milnor condition. In this talk, we discuss a generalization of the Fox-Milnor condition to links and their multivariable Alexander polynomials. The main tool is an interpretation of the Alexander polynomials in terms of “Reidemeister torsion”, a notion defined for general manifolds. We will see that the Fox-Milnor condition is a reflection of a certain duality theorem for Reidemeister torsion.

Series
Time
for
Location
Speaker
Organizer

This series will tie together algebraic, complex analytic, symplectic, and contact geometries together in one coherent story. This will be done via the study of a series of couplets from different fields of geometry:

Algebraic manifolds:
Affine and quasi-projective varieties (non-compact models)
Projective varieties (compact models)

Complex manifolds:
Stein manifolds
Stein compactifications

Symplectic manifolds:
Liouville/ Weinstein geometry
Compact Kahler manifolds 

Series
Time
for
Location
Speaker
Organizer

Taking the double branched cover of $S^3$ over a knot $K$ is natural way to associate $K$ with a 3-manifold, and to study the double branched cover, we often want a Dehn surgery description for it. The Montesinos trick gives a systematic way to get such a description. In this talk, we will go over the broad statement of this trick: that a rational tangle replacement on the knot corresponds to Dehn surgery on the double branched cover. This gives particularly nice descriptions for some satellites of $K$ as surgery on $K \mathrel\# K^r$.

Series
Time
for
Location
Speaker
Organizer

This series will tie together algebraic, complex analytic, symplectic, and contact geometries together in one coherent story. This will be done via the study of a series of couplets from different fields of geometry:

Algebraic manifolds:
Affine and quasi-projective varieties (non-compact models)
Projective varieties (compact models)

Complex manifolds:
Stein manifolds
Stein compactifications

Symplectic manifolds:
Liouville/ Weinstein geometry
Compact Kahler manifolds 

Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer

Abstract TBA

Series
Time
for
Location
Speaker
Organizer

Series
Time
for
Location
Speaker
Organizer

The Fox trapezoidal conjecture is a longstanding open problem about the coefficients of the Alexander polynomial of alternating links. In this talk, we will discuss recent work which settled this conjecture for “special alternating links”. The first tool is a graph theoretic model of the Alexander polynomial of an alternating link discovered by Crowell in 1959. The second is the theory of Lorentzian polynomials, developed by Brändén and Huh in 2019 and a key part of Huh’s Fields medal work.

Series
Time
for
Location
Speaker
Organizer

In order to distinguish Legendrians with the same classical invariants, Chekanov and Eliashberg separately defined the Chekanov-Eliashberg DGA. Chekanov further defined a linearized version. Ekholm, Honda, and Kalman showed an exact Lagrangian cobordism between two Legendrians induces a DGA map on their respective DGAs. We show how to adapt this map to the linearized version. Time permitting, we will use this map to obstruct invertible concordances between negative twist knots. This is joint work with Sierra Knavel.

Pages

Subscribe to RSS - Geometry and Topology