Geometry and Topology

Series
Time
for
Location
Speaker
Organizer
We will introduce new constructions of infinite families of smooth structures on small 4-manifolds and infinite families of smooth knottings of surfaces.
Series
Time
for
Location
Speaker
Organizer
To each three-component link in the 3-dimensional sphere we associate a characteristic map from the 3-torus to the 2-sphere, and establish a correspondence between the pairwise and Milnor triple linking numbers of the link and the Pontryagin invariants that classify its characteristic map up to homotopy.
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
Series
Time
for
Location
Speaker
Organizer
The uniform thickness property (UTP) is a property of knots embeddedin the 3-sphere with the standard contact structure. The UTP was introduced byEtnyre and Honda, and has been useful in studying the Legendrian and transversalclassification of cabled knot types. We show that every iterated torus knotwhich contains at least one negative iteration in its cabling sequence satisfiesthe UTP. We also conjecture a complete UTP classification for iterated torusknots, and fibered knots in general.
Series
Time
for
Location
Speaker
Organizer
The deformation variety is similar to the representation variety inthat it describes (generally incomplete) hyperbolic structures on3-manifolds with torus boundary components. However, the deformationvariety depends crucially on a triangulation of the manifold: theremay be entire components of the representation variety which can beobtained from the deformation variety with one triangulation but notanother, and it is unclear how to choose a "good" triangulation thatavoids these problems.
Series
Time
for
Location
Speaker
Organizer
We will discuss how to put a hyperbolic structure on various surface and 3-manifolds. We will being by discussing isometries of hyperbolic space in dimension 2 and 3. Using our understanding of these isometries we will explicitly construct hyperbolic structures on all close surfaces of genus greater than one and a complete finite volume hyperbolic structure on the punctured torus. We will then consider the three dimensional case where we will concentrate on putting hyperbolic structures on knot complements. (Note: this is a 1.5 hr lecture)
Series
Time
for
Location
Speaker
Organizer
We will discuss how to put a hyperbolic structure on various surface and 3-manifolds. We will being by discussing isometries of hyperbolic space in dimension 2 and 3. Using our understanding of these isometries we will explicitly construct hyperbolic structures on all close surfaces of genus greater than one and a complete finite volume hyperbolic structure on the punctured torus. We will then consider the three dimensional case where we will concentrate on putting hyperbolic structures on knot complements. (Note: this is a 2 hr seminar)
Series
Time
for
Location
Speaker
Organizer
After reviewing a few techniques from the theory of confoliation in dimension three we will discuss some generalizations and certain obstructions in extending these techniques to higher dimensions. We also will try to discuss a few questions regarding higher dimensional confoliations.
Series
Time
for
Location
Speaker
Organizer
A closed hyperbolic 3-manifold $M$ determines a fundamental classin the algebraic K-group $K_3^{ind}(C)$. There is a regulator map$K_3^{ind}(C)\to C/4\Pi^2Z$, which evaluated on the fundamental classrecovers the volume and Chern-Simons invariant of $M$. The definition of theK-groups are very abstract, and one is interested in more concrete models.The extended Bloch is such a model.

Pages

Subscribe to RSS - Geometry and Topology