Seminars and Colloquia Schedule

Finite Dimensional Balian-Low Theorems

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 7, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Dr. Michael NorthingtonGT Math
Gabor systems, or collections of translations and modulations of a window function, are often used for time-frequency analysis of signals. The Balian-Low Theorem and its generalizations say that if a Gabor system obeys certain spanning and independence properties in L^2(R), then the window function of such a system cannot be well localized in both time and frequency. Recently, Shahaf Nitzan and Jan—Fredrik Olsen show that similar behavior extends to Gabor systems of finite length signals in l^2(Z_d). In this talk, I will discuss these finite dimensional results as well as recent extensions proven in collaboration with Josiah Park.

A modern maximum-likelihood approach for high-dimensional logistic regression

Series
Job Candidate Talk
Time
Tuesday, January 8, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pragya SurStatistics Department, Stanford University
Logistic regression is arguably the most widely used and studied non-linear model in statistics. Classical maximum-likelihood theory based statistical inference is ubiquitous in this context. This theory hinges on well-known fundamental results—(1) the maximum-likelihood-estimate (MLE) is asymptotically unbiased and normally distributed, (2) its variability can be quantified via the inverse Fisher information, and (3) the likelihood-ratio-test (LRT) is asymptotically a Chi-Squared. In this talk, I will show that in the common modern setting where the number of features and the sample size are both large and comparable, classical results are far from accurate. In fact, (1) the MLE is biased, (2) its variability is far greater than classical results, and (3) the LRT is not distributed as a Chi-Square. Consequently, p-values obtained based on classical theory are completely invalid in high dimensions. In turn, I will propose a new theory that characterizes the asymptotic behavior of both the MLE and the LRT under some assumptions on the covariate distribution, in a high-dimensional setting. Empirical evidence demonstrates that this asymptotic theory provides accurate inference in finite samples. Practical implementation of these results necessitates the estimation of a single scalar, the overall signal strength, and I will propose a procedure for estimating this parameter precisely. This is based on joint work with Emmanuel Candes and Yuxin Chen.

Network data: Modeling and Statistical Analysis

Series
Job Candidate Talk
Time
Thursday, January 10, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Subhabrata SenMIT
Network data arises frequently in modern scientific applications. These networks often have specific characteristics such as edge sparsity, heavy-tailed degree distribution etc. Some broad challenges arising in the analysis of such datasets include (i) developing flexible, interpretable models for network datasets, (ii) testing for goodness of fit, (iii) provably recovering latent structure from such data.In this talk, we will discuss recent progress in addressing very specific instantiations of these challenges. In particular, we will1. Interpret the Caron-Fox model using notions of graph sub-sampling, 2. Study model misspecification due to rare, highly “influential” nodes, 3. Discuss recovery of community structure, given additional covariates.

A numerical analysis approach to convex optimization

Series
ACO Student Seminar
Time
Friday, January 11, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Richard PengCS, Georgia Tech
In current convex optimization literature, there are significant gaps between algorithms that produce high accuracy (1+1/poly(n))-approximate solutions vs. algorithms that produce O(1)-approximate solutions for symmetrized special cases. This gap is reflected in the differences between interior point methods vs. (accelerated) gradient descent for regression problems, and between exact vs. approximate undirected max-flow. In this talk, I will discuss generalizations of a fundamental building block in numerical analysis, preconditioned iterative methods, to convex functions that include p-norms. This leads to algorithms that converge to high accuracy solutions by crudely solving a sequence of symmetric residual problems. I will then briefly describe several recent and ongoing projects, including p-norm regression using m^{1/3} linear system solves, p-norm flow in undirected unweighted graphs in almost-linear time, and further improvements to the dependence on p in the runtime.

Convergence of the viscosity solutions in vanishing contact structure problem

Series
Dynamical Systems Working Seminar
Time
Friday, January 11, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Qinbo ChenAMSS & GT Math
In this talk, I will discuss the vanishing contact structure problem, which focuses on the asymptotic behavior of the viscosity solutions uε of Hamilton-Jacobi equation H (x, Du(x), ε u(x)) =c, as the factor ε tends to zero. This is a natural generalization of the vanishing discount problem. I will explain how to characterize the limit solution in terms of Peierls barrier functions and Mather measures from a dynamical viewpoint. This is a joint work with Hitoshi Ishii, Wei Cheng, and Kai Zhao.

Synchronization of pendulum clocks and metronomes

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 14, 2019 - 01:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Guillermo GoldszteinGT School of Math
In 1665, Huygens discovered that, when two pendulum clocks hanged from a same wooden beam supported by two chairs, they synchronize in anti-phase mode. On the other hand, metronomes synchronize in-phase when oscillating on top of the same movable surface. In this talk, I will describe and analyze a model to help understand the conditions that lead to anti-phase synchronization vs. the conditions that lead to in-phase synchronization.

Sparse domination and the strong maximal function

Series
Analysis Seminar
Time
Wednesday, January 16, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alexander BarronBrown University
There has been recent interest in sparse bounds for various operators that arise in harmonic analysis. Perhaps the most basic "sparse" result is a pointwise bound for the dyadic Hardy-Littlewood maximal function. It turns out that the direct analogue of this result does not hold if one adds an extra dilation parameter: the dyadic strong maximal function does not admit a pointwise sparse bound or a sparse bound involving L^1 forms (both of which hold in the one-parameter setting). The proof is based on the construction of a certain pair of extremal point sets. This is joint work with Jose Conde-Alonso, Yumeng Ou, and Guillermo Rey.

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-Sectional Curvature: Lecture 1

Series
Geometry Topology Student Seminar
Time
Wednesday, January 16, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative $\alpha$-sectional curvature) are universally tight, irrducible and do not admit a Liouville cobordism to tight 3-sphere.

Fluctuation of ergodic sums over periodic orbits

Series
CDSNS Colloquium
Time
Thursday, January 17, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Manfred DenkerPenn State University
The fluctuations of ergodic sums by the means of global and local specifications on periodic points will be discussed. Results include a Lindeberg-type central limit theorems in both setups of specification. As an application, it is shown that averaging over randomly chosen periodic orbits converges to the integral with respect to the measure of maximal entropy as the period approaches infinity. The results also suggest to decompose the variances of ergodic sums according to global and local sources.

Matrix Estimation with Latent Permutations

Series
Job Candidate Talk
Time
Thursday, January 17, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cheng MaoYale University
A wide variety of applied tasks, such as ranking, clustering, graph matching and network reconstruction, can be formulated as a matrix estimation problem where the rows and columns of the matrix are shuffled by a latent permutation. The combinatorial nature of the unknown permutation and the non-convexity of the parameter space result in both statistical and algorithmic challenges. I will present recent developments of average-case models and efficient algorithms, primarily for the problems of ranking from comparisons and statistical seriation. On the statistical side, imposing shape constraints on the underlying matrix extends traditional parametric approaches, allowing for more robust and adaptive estimation. On the algorithmic front, I discuss efficient local algorithms with provable guarantees, one of which tightens a conjectured statistical-computational gap for a stochastically transitive ranking model.

A tale of models for random graphs

Series
Combinatorics Seminar
Time
Thursday, January 17, 2019 - 12:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Jeong Han KimKorea Institute for Advanced Study (KIAS)
Since Erdős–Rényi introduced random graphs in 1959, two closely related models for random graphs have been extensively studied. In the G(n,m) model, a graph is chosen uniformly at random from the collection of all graphs that have n vertices and m edges. In the G(n,p) model, a graph is constructed by connecting each pair of two vertices randomly. Each edge is included in the graph G(n,p) with probability p independently of all other edges. Researchers have studied when the random graph G(n,m) (or G(n,p), resp.) satisfies certain properties in terms of n and m (or n and p, resp.). If G(n,m) (or G(n,p), resp.) satisfies a property with probability close to 1, then one may say that a `typical graph’ with m edges (or expected edge density p, resp.) on n vertices has the property. Random graphs and their variants are also widely used to prove the existence of graphs with certain properties. In this talk, two problems for these categories will be discussed. First, a new approach will be introduced for the problem of the emergence of a giant component of G(n,p), which was first considered by Erdős–Rényi in 1960. Second, a variant of the graph process G(n,1), G(n,2), …, G(n,m), … will be considered to find a tight lower bound for Ramsey number R(3,t) up to a constant factor. (No prior knowledge of graph theory is needed in this talk.)

Stein's Method for Infinitely Divisible Laws With Finite First Moment

Series
Stochastics Seminar
Time
Thursday, January 17, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benjamin ArrasUniversity of Lille
Stein's method is a powerful technique to quantify proximity between probability measures, which has been mainly developed in the Gaussian and the Poisson settings. It is based on a covariance representation which completely characterizes the target probability measure. In this talk, I will present some recent unifying results regarding Stein's method for infinitely divisible laws with finite first moment. In particular, I will present new quantitative results regarding Compound Poisson approximation of infinitely divisible laws, approximation of self-decomposable distributions by sums of independent summands and stability results for self-decomposable laws which satisfy a second moment assumption together with an appropriate Poincaré inequality. This is based on joint works with Christian Houdré.

Chaotic regimes for random dynamical systems

Series
Job Candidate Talk
Time
Friday, January 18, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex BlumenthalUniv. of Maryland

It is anticipated that chaotic regimes (characterized by, e.g., sensitivity with respect to initial conditions and loss of memory) arise in a wide variety of dynamical systems, including those arising from the study of ensembles of gas particles and fluid mechanics. However, in most cases the problem of rigorously verifying asymptotic chaotic regimes is notoriously difficult. For volume-preserving systems (e.g., incompressible fluid flow or Hamiltonian systems), these issues are exemplified by coexistence phenomena: even in quite simple models which should be chaotic, e.g. the Chirikov standard map, completely opposite dynamical regimes (elliptic islands vs. hyperbolic sets) can be tangled together in phase space in a convoluted way.

Recent developments have indicated, however, that verifying chaos is tractable for systems subjected to a small amount of noise— from the perspective of modeling, this is not so unnatural, as the real world is inherently noisy. In this talk, I will discuss two recent results: (1) a large positive Lyapunov exponent for (extremely small) random perturbations of the Chirikov standard map, and (2) a positive Lyapunov exponent for the Lagrangian flow corresponding to various incompressible stochastic fluids models, including stochastic 2D Navier-Stokes and 3D hyperviscous Navier-Stokes on the periodic box. The work in this talk is joint with Jacob Bedrossian, Samuel Punshon-Smith, Jinxin Xue and Lai-Sang Young.

Fast sampling of sparse contingency tables

Series
Combinatorics Seminar
Time
Friday, January 18, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 169 (*Unusual room*)
Speaker
Samuel DittmerMathematics, UCLA
We present a new algorithm for sampling contingency tables with fixed margins. This algorithm runs in polynomial time for certain broad classes of sparse tables. We compare the performance of our algorithm theoretically and experimentally to existing methods, including the Diaconis-Gangolli Markov chain and sequential importance sampling. Joint work with Igor Pak.

On the relationship between the thin film equation and Tanner's law

Series
PDE Seminar
Time
Tuesday, January 22, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Matias DelgadinoImperial College
In this talk we will introduce two models for the movement of a small droplet over a substrate: the thin film equation and the quasi static approximation. By tracking the motion of the apparent support of solutions to the thin film equation, we connect these two models. This connection was expected from Tanner's law: the edge velocity of a spreading thin film on a pre-wetted solid is approximately proportional to the cube of the slope at the inflection. This is joint work with Prof. Antoine Mellet.

Valuations on convex sets and integral geometry

Series
Analysis Seminar
Time
Wednesday, January 23, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Semyon AleskerTel Aviv University
Valuations are finitely additive measures on convex compact subsets of a finite dimensional vector space. The theory of valuations originates in convex geometry. Valuations continuous in the Hausdorff metric play a special role, and we will concentrate in the talk on this class of valuations. In recent years there was a considerable progress in the theory and its applications. We will describe some of the progress with particular focus on the multiplicative structure on valuations and its applications to kinematic formulas of integral geometry.

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-Sectional Curvature: Lecture 2

Series
Geometry Topology Student Seminar
Time
Wednesday, January 23, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative α-sectional curvature) are universally tight, irrducible and do not admit a Liouville cobordism to tight 3-sphere.

Few conjectures on intrinsic volumes on Riemannian manifolds and Alexandrov spaces

Series
High Dimensional Seminar
Time
Wednesday, January 23, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Semyon AleskerTel Aviv University

The celebrated Hadwiger's theorem says that linear combinations of intrinsic volumes on convex sets are the only isometry invariant continuous valuations(i.e. finitely additive measures). On the other hand H. Weyl has extended intrinsic volumes beyond convexity, to Riemannian manifolds. We try to understand the continuity properties of this extension under theGromov-Hausdorff convergence (literally, there is no such continuityin general). First, we describe a new conjectural compactification of the set of all closed Riemannian manifolds with given upper bounds on dimensionand diameter and lower bound on sectional curvature. Points of thiscompactification are pairs: an Alexandrov space and a constructible(in the Perelman-Petrunin sense) function on it. Second, conjecturally all intrinsic volumes extend by continuity to this compactification. No preliminary knowledge of Alexandrov spaces will be assumed, though it will be useful.

Singular Elements of Linear Series

Series
Intersection Theory Seminar
Time
Thursday, January 24, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stephen McKeanGeorgia Tech
We will cover the first half of chapter 7 of Eisenbud and Harris, 3264 and All That.Topics: singular hypersurfaces and the universal singularity, bundles of principal parts, singular elements of a pencil, singular elements of linear series in general.

Lower bounds for fluctuations in first-passage percolation

Series
Stochastics Seminar
Time
Thursday, January 24, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
M. DamronSOM, GaTech
In first-passage percolation (FPP), one assigns i.i.d. weights to the edges of the cubic lattice Z^d and analyzes the induced weighted graph metric. If T(x,y) is the distance between vertices x and y, then a primary question in the model is: what is the order of the fluctuations of T(0,x)? It is expected that the variance of T(0,x) grows like the norm of x to a power strictly less than 1, but the best lower bounds available are (only in two dimensions) of order \log |x|. This result was found in the '90s and there has not been any improvement since. In this talk, we discuss the problem of getting stronger fluctuation bounds: to show that T(0,x) is with high probability not contained in an interval of size o(\log |x|)^{1/2}, and similar statements for FPP in thin cylinders. Such a statement has been proved for special edge-weight distributions by Pemantle-Peres ('95) and Chatterjee ('17). In work with J. Hanson, C. Houdré, and C. Xu, we extend these bounds to general edge-weight distributions. I will explain some of the methods we use, including an old and elementary "small ball" probability result for functions on the hypercube.

Sticky Brownian Rounding and its Applications to Optimization Problems

Series
ACO Student Seminar
Time
Friday, January 25, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohit SinghISyE, Georgia Tech
We present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired byrecent results in algorithmic discrepancy theory. We develop and present toolsfor analyzing our new rounding algorithms, utilizing mathematical machineryfrom the theory of Brownian motion, complex analysis, and partial differentialequations. We will present our method to several classical problems, including Max-Cut, Max-di-cut and Max-2-SAT, and derive new algorithms that are competitive with the best known results. In particular, we show that the basic algorithm achieves 0.861-approximation for Max-cut and a natural variant of the algorithm achieve 0.878-approximation, matching the famous Goemans-Williamson algorithm upto first three decimal digits. This is joint work with Abbas-Zadeh, Nikhil Bansal, Guru Guruganesh, Sasho Nikolov and Roy Schwartz.

Bridge trisections and minimal genus

Series
Geometry Topology Working Seminar
Time
Friday, January 25, 2019 - 14:00 for 2 hours
Location
Skiles 006
Speaker
Peter Lambert-ColeGeorgia Insitute of Technology
The classical degree-genus formula computes the genus of a nonsingular algebraic curve in the complex projective plane. The well-known Thom conjecture posits that this is a lower bound on the genus of smoothly embedded, oriented and connected surface in CP^2. The conjecture was first proved twenty-five years ago by Kronheimer and Mrowka, using Seiberg-Witten invariants. In this talk, we will describe a new proof of the conjecture that combines contact geometry with the novel theory of bridge trisections of knotted surfaces. Notably, the proof completely avoids any gauge theory or pseudoholomorphic curve techniques.

The dimension of an amoeba

Series
Algebra Seminar
Time
Friday, January 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chi Ho YuenUniversity of Bern
An amoeba is the image of a subvariety X of an algebraic torus under the logarithmic moment map. Nisse and Sottile conjectured that the (real) dimension of an amoeba is smaller than the expected one, namely, two times the complex dimension of X, precisely when X has certain symmetry with respect to toric actions. We prove their conjecture and derive a formula for the dimension of an amoeba. We also provide a connection with tropical geometry. This is joint work with Jan Draisma and Johannes Rau.

Property testing and removal lemma

Series
Combinatorics Seminar
Time
Friday, January 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fan WeiStanford University
The importance of analyzing big data and in particular very large networks has shown that the traditional notion of a fast algorithm, one that runs in polynomial time, is often insufficient. This is where property testing comes in, whose goal is to very quickly distinguish between objects that satisfy a certain property from those that are ε-far from satisfying that property. It turns out to be closely related to major developments in combinatorics, number theory, discrete geometry, and theoretical computer science. Some of the most general results in this area give "constant query complexity" algorithms, which means the amount of information it looks at is independent of the input size. These results are proved using regularity lemmas or graph limits. Unfortunately, typically the proofs come with no explicit bound for the query complexity, or enormous bounds, of tower-type or worse, as a function of 1/ε, making them impractical. We show by entirely new methods that for permutations, such general results still hold with query complexity only polynomial in 1/ε. We also prove stronger results for graphs through the study of new metrics. These are joint works with Jacob Fox.

Non-Archimedean Hyperbolicity and Applications

Series
Algebra Seminar
Time
Monday, January 28, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jackson MorrowEmory university
The conjectures of Green—Griffths—Lang predict the precise interplay between different notions of hyperbolicity: Brody hyperbolic, arithmetically hyperbolic, Kobayashi hyperbolic, algebraically hyperbolic, groupless, and more. In his thesis (1993), W.~Cherry defined a notion of non-Archimedean hyperbolicity; however, his definition does not seem to be the "correct" version, as it does not mirror complex hyperbolicity. In recent work, A.~Javanpeykar and A.~Vezzani introduced a new non-Archimedean notion of hyperbolicity, which ameliorates this issue, and also stated a non-Archimedean variant of the Green—Griffths—Lang conjecture. In this talk, I will discuss complex and non-Archimedean notions of hyperbolicity as well as some recent progress on the non-Archimedean Green—Griffths—Lang conjecture. This is joint work with Ariyan Javanpeykar (Mainz) and Alberto Vezzani (Paris 13).

Joint GT-UGA Seminar at UGA - Knot Concordances in S^1 x S^2 and Constructing Akbulut-Ruberman Type Exotic 4-Manifolds

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Eylem YildizMichigan State University
I will discuss knot concordances in 3-manifolds. In particular I will talk about knot concordances of knots in the free homotopy class of S^1 x {pt} in S^1 x S^2. It turns out, we can use some of these concordances to construct Akbulut-Ruberman type exotic 4-manifolds. As a consequence, at the end of the talk we will see absolutely exotic Stein pair of 4-manifolds. This is joint work with Selman Akbulut.

Joint GT-UGA Seminar at UGA - Link Floer homology and the stabilization distance

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Ian ZemkePrinceton University
In this talk, we describe some applications of link Floer homology to the topology of surfaces in 4-space. If K is a knot in S^3, we will consider the set of surfaces in B^4 which bound K. This space is naturally endowed with a plethora of non-Euclidean metrics and pseudo-metrics. The simplest such metric is the stabilization distance, which is the minimum k such that there is a stabilization sequence connecting two surfaces such that no surface in the sequence has genus greater than k. We will talk about how link Floer homology can be used to give lower bounds, as well as some techniques for computing non-trivial examples. This is joint work with Andras Juhasz.

Exploring the impact of inoculum dose on host immunity and morbidity to inform model-based vaccine design

Series
Mathematical Biology Seminar
Time
Wednesday, January 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andreas HandelUGA
Vaccination is an effective method to protect against infectious diseases. An important consideration in any vaccine formulation is the inoculum dose, i.e., amount of antigen or live attenuated pathogen that is used. Higher levels generally lead to better stimulation of the immune response but might cause more severe side effects and allow for less population coverage in the presence of vaccine shortages. Determining the optimal amount of inoculum dose is an important component of rational vaccine design. A combination of mathematical models with experimental data can help determine the impact of the inoculum dose. We designed mathematical models and fit them to data from influenza A virus (IAV) infection of mice and human parainfluenza virus (HPIV) of cotton rats at different inoculum doses. We used the model to predict the level of immune protection and morbidity for different inoculum doses and to explore what an optimal inoculum dose might be. We show how a framework that combines mathematical models with experimental data can be used to study the impact of inoculum dose on important outcomes such as immune protection and morbidity. We find that the impact of inoculum dose on immune protection and morbidity depends on the pathogen and both protection and morbidity do not always increase with increasing inoculum dose. An intermediate inoculum dose can provide the best balance between immune protection and morbidity, though this depends on the specific weighting of protection and morbidity. Once vaccine design goals are specified with required levels of protection and acceptable levels of morbidity, our proposed framework which combines data and models can help in the rational design of vaccines and determination of the optimal amount of inoculum.

Distance sets, lattice points, and decoupling estimates

Series
Analysis Seminar
Time
Wednesday, January 30, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex IosevichUniversity of Rochester
We are going to discuss some recent results pertaining to the Falconer distance conjecture, including the joint paper with Guth, Ou and Wang establishing the $\frac{5}{4}$ threshold in the plane. We are also going to discuss the extent to which the sharpness of our method and similar results is tied to the distribution of lattice points on convex curves and surfaces.

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-Sectional Curvature: Lecture 3

Series
Geometry Topology Student Seminar
Time
Wednesday, January 30, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative α-sectional curvature) are universally tight, irrducible and do not admit a Liouville cobordism to tight 3-sphere.

Combinatorial methods in frame theory

Series
High Dimensional Seminar
Time
Wednesday, January 30, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles. 006
Speaker
Alex IosevichUniversity of Rochester

We shall survey a variety of results, some recent, some going back a long time, where combinatorial methods are used to prove or disprove the existence of orthogonal exponential bases and Gabor bases. The classical Erdos distance problem and the Erdos Integer Distance Principle play a key role in our discussion.

CANCELLED - Control through canalization in modeling the innate immune response to ischemic injury - CANCELLED

Series
Other Talks
Time
Thursday, January 31, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Elena DimitrovaClemson University

This is a SCMB MathBioSys Seminar posted on behalf of Melissa Kemp (GT BME)

Constriction of blood vessels in the extremities due to traumatic injury to halt excessive blood loss or resulting from pathologic occlusion can cause considerable damage to the surrounding tissues with significant morbidity and mortality. Optimal healing of damaged tissue relies on the precise balance of pro-inflammatory and pro-healing processes of innate inflammation. In this talk, we will present a discrete multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components. We take advantage of the canalization properties of some of the functions, which is a type of hierarchical clustering of the inputs, and use it as control to steer the system away from a faulty attractor and understand better the regulatory relations that govern the system dynamics.EDIT: CANCELLED

The SQG equation

Series
Job Candidate Talk
Time
Thursday, January 31, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Javier Gómez-SerranoPrinceton University
There has been high scientific interest to understand the behavior of the surface quasi-geostrophic (SQG) equation because it is a possible model to explain the formation of fronts of hot and cold air and because it also exhibits analogies with the 3D incompressible Euler equations. It is not known at this moment if this equation can produce singularities or if solutions exist globally. In this talk I will discuss some recent works on the existence of global solutions.

Singular Elements of Linear Series part II

Series
Intersection Theory Seminar
Time
Thursday, January 31, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel MinahanGeorgia Tech
We will finish chapter 7 of Eisenbud and Harris, 3264 and All That.Topics: Inflection points of curves in P^r, nets of plane curves, the topological Hurwitz formula.

Estimation of smooth functionals of high-dimensional covariance

Series
Stochastics Seminar
Time
Thursday, January 31, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
V. KoltchinskiiSOM, GaTech

We discuss a problem of asymptotically efficient (that is, asymptotically normal with minimax optimal limit variance) estimation of functionals of the form $\langle f(\Sigma), B\rangle$ of unknown covariance $\Sigma$ based on i.i.d.mean zero Gaussian observations $X_1,\dots, X_n\in {\mathbb R}^d$ with covariance $$\Sigma$. Under the assumptions that the dimension $d\leq n^{\alpha}$ for some $\alpha\in (0,1)$ and $f:{\mathbb R}\mapsto {\mathbb R}$ is of smoothness $s>\frac{1}{1-\alpha},$ we show how to construct an asymptotically efficient estimator of such functionals (the smoothness threshold $\frac{1}{1-\alpha}$ is known to be optimal for a simpler problem of estimation of smooth functionals of unknown mean of normal distribution).

The proof of this result relies on a variety of probabilistic and analytic tools including Gaussian concentration, bounds on the remainders of Taylor expansions of operator functions and bounds on finite differences of smooth functions along certain Markov chains in the spaces of positively semi-definite matrices.

Opportunities at the Intersection of AI and Society

Series
ACO Student Seminar
Time
Friday, February 1, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Groseclose 402
Speaker
Nisheeth VishnoiCS, Yale University

(The talk will be at 1-2pm, then it follows by a discussion session from 2 pm to 2:45 pm.)

Powerful AI systems, which are driven by machine learning, are increasingly controlling various aspects of modern society: from social interactions (e.g., Facebook, Twitter, Google, YouTube), economics (e.g., Uber, Airbnb, Banking), learning (e.g., Wikipedia, MOOCs), governance (Judgements, Policing, Voting), to autonomous vehicles and weapons. These systems have a tremendous potential to change our lives for the better, but, via the ability to mimic and nudge human behavior, they also have the potential to be discriminatory, reinforce societal prejudices, and polarize opinions. Moreover, recent studies have demonstrated that these systems can be quite brittle and generally lack the required robustness to be deployed in various civil/military situations. The reason being that considerations such as fairness, robustness, stability, explainability, accountability etc. have largely been an afterthought in the development of AI systems. In this talk, I will discuss the opportunities that lie ahead in a principled and thoughtful development of AI systems.

Bio

Nisheeth Vishnoi is a Professor of Computer Science at Yale University. He received a B.Tech in Computer Science and Engineering from IIT Bombay in 1999 and a Ph.D. in Algorithms, Combinatorics and Optimization from Georgia Tech in 2004. His research spans several areas of theoretical computer science: from approximability of NP-hard problems, to combinatorial, convex and non-convex optimization, to tackling algorithmic questions involving dynamical systems, stochastic processes and polynomials. He is also broadly interested in understanding and addressing some of the key questions that arise in nature and society from the viewpoint of theoretical computer science. Here, his current focus is on natural algorithms, emergence of intelligence, and questions at the interface of AI, ethics, and society. He was the recipient of the Best Paper Award at FOCS in 2005, the IBM Research Pat Goldberg Memorial Award in 2006, the Indian National Science Academy Young Scientist Award in 2011, and the IIT Bombay Young Alumni Achievers Award in 2016.

Acylindrical hyperbolicity of non-elementary convergence groups

Series
Geometry Topology Seminar
Time
Friday, February 1, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bin SunVanderbilt
The notion of an acylindrically hyperbolic group was introduced by Osin as a generalization of non-elementary hyperbolic and relative hyperbolic groups. Ex- amples of acylindrically hyperbolic groups can be found in mapping class groups, outer automorphism groups of free groups, 3-manifold groups, etc. Interesting properties of acylindrically hyperbolic groups can be proved by applying techniques such as Monod-Shalom rigidity theory, group theoretic Dehn filling, and small cancellation theory. We have recently shown that non-elementary convergence groups are acylindrically hyperbolic. This result opens the door for applications of the theory of acylindrically hyperbolic groups to non-elementary convergence groups. In addition, we recovered a result of Yang which says a finitely generated group whose Floyd boundary has at least 3 points is acylindrically hyperbolic.

On numerical composition of Taylor-Fourier

Series
Dynamical Systems Working Seminar
Time
Friday, February 1, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Joan GimenoBGSMath-UB
A real Taylor-Fourier expression is a Taylor expression whose coefficients are real Fourier series. In this talk we will discuss different numerical methods to compute the composition of two Taylor-Fourier expressions. To this end, we will show some possible implementations and we are going to discuss and show some results in performance. In particular, we are going to cover how the compositon of two Fourier series can be perfomed in logarithmic complexity.

Kazhdan-Lusztig theory for matroids

Series
Algebra Seminar
Time
Monday, February 4, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Botong WangUniversity of Wisconsin-Madison
Matroids are basic combinatorial objects arising from graphs and vector configurations. Given a vector configuration, I will introduce a “matroid Schubert variety” which shares various similarities with classical Schubert varieties. I will discuss how the Hodge theory of such matroid Schubert varieties can be used to prove a purely combinatorial conjecture, the “top-heavy” conjecture of Dowling-Wilson. I will also report an on-going project joint with Tom Braden, June Huh, Jacob Matherne, Nick Proudfoot on the cohomology theory of non-realizable matroids.

An Adaptive Sampling Approach for Surrogate Modeling of Expensive Computer Experiments

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 4, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ashwin RenganathanGT AE

In the design of complex engineering systems like aircraft/rotorcraft/spacecraft, computer experiments offer a cheaper alternative to physical experiments due to high-fidelity(HF) models. However, such models are still not cheap enough for application to Global Optimization(GO) and Uncertainty Quantification(UQ) to find the best possible design alternative. In such cases, surrogate models of HF models become necessary. The construction of surrogate models requires an offline database of the system response generated by running the expensive model several times. In general, the training sample size and distribution for a given problem is unknown apriori and can be over/under predicted, which leads to wastage of resources and poor decision-making. An adaptive model building approach eliminates this problem by sequentially sampling points based on information gained in the previous step. However, an approach that works for highly non-stationary response is still lacking in the literature. Here, we use Gaussian Process(GP) models as surrogate model. We employ a novel process-convolution approach to generate parameterized non-stationary.

GPs that offer control on the process smoothness. We show that our approach outperforms existing methods, particularly for responses that have localized non-smoothness. This leads to better performance in terms of GO, UQ and mean-squared-prediction-errors for a given budget of HF function calls.

An Adaptive Sampling Approach for Surrogate Modeling of Expensive Computer Experiments

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 4, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ashwin RenganathanGT AE

In the design of complex engineering systems like aircraft/rotorcraft/spacecraft, computer experiments offer a cheaper alternative to physical experiments due to high-fidelity(HF) models. However, such models are still not cheap enough for application to Global Optimization(GO) and Uncertainty Quantification(UQ) to find the best possible design alternative. In such cases, surrogate models of HF models become necessary. The construction of surrogate models requires an offline database of the system response generated by running the expensive model several times. In general, the training sample size and distribution for a given problem is unknown apriori and can be over/under predicted, which leads to wastage of resources and poor decision-making. An adaptive model building approach eliminates this problem by sequentially sampling points based on information gained in the previous step. However, an approach that works for highly non-stationary response is still lacking in the literature. Here, we use Gaussian Process(GP) models as surrogate model. We employ a novel process-convolution approach to generate parameterized non-stationary

GPs that offer control on the process smoothness. We show that our approach outperforms existing methods, particularly for responses that have localized non-smoothness. This leads to better performance in terms of GO, UQ and mean-squared-prediction-errors for a given budget of HF function calls.

Descriptions of three-manifolds

Series
Research Horizons Seminar
Time
Wednesday, February 6, 2019 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jennifer HomGeorgia Tech
In this talk, we will discuss various ways to describe three-manifolds by decomposing them into pieces that are (maybe) easier to understand. We will use these descriptions as a way to measure the complexity of a three-manifold.

Sparse bounds for discrete spherical maximal functions

Series
Analysis Seminar
Time
Wednesday, February 6, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dario Alberto MenaUniversity of Costa Rica
We prove sparse bounds for the spherical maximal operator of Magyar,Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint esti-mate. The new method of proof is inspired by ones by Bourgain and Ionescu, is veryefficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arccomponents. The efficiency arises as one only needs a single estimate on each elementof the decomposition.

Dynamics and Topology of Contact 3-Manifolds with negative $\alpha$-sectional curvature: Lecture 4

Series
Geometry Topology Student Seminar
Time
Wednesday, February 6, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
In this series of (3-5) lectures, I will talk about different aspects of a class of contact 3-manifolds for which geometry, dynamics and topology interact subtly and beautifully. The talks are intended to include short surveys on "compatibility", "Anosovity" and "Conley-Zehnder indices". The goal is to use the theory of Contact Dynamics to show that conformally Anosov contact 3-manifolds (in particular, contact 3-manifolds with negative α-sectional curvature) are universally tight, irreducible and do not admit a Liouville cobordism to the tight 3-sphere.

Global Convergence of Neuron Birth-Death Dynamics

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, February 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joan Bruna EstrachNew York University
Neural networks with a large number of parameters admit a mean-field description, which has recently served as a theoretical explanation for the favorable training properties of "overparameterized" models. In this regime, gradient descent obeys a deterministic partial differential equation (PDE) that converges to a globally optimal solution for networks with a single hidden layer under appropriate assumptions. In this talk, we propose a non-local mass transport dynamics that leads to a modified PDE with the same minimizer. We implement this non-local dynamics as a stochastic neuronal birth-death process and we prove that it accelerates the rate of convergence in the mean-field limit. We subsequently realize this PDE with two classes of numerical schemes that converge to the mean-field equation, each of which can easily be implemented for neural networks with finite numbers of parameters. We illustrate our algorithms with two models to provide intuition for the mechanism through which convergence is accelerated. Joint work with G. Rotskoff (NYU), S. Jelassi (Princeton) and E. Vanden-Eijnden (NYU).

On delocalization of eigenvectors of random non-Hermitian matrices

Series
High Dimensional Seminar
Time
Wednesday, February 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anna LytovaUniversity of Opole

We study delocalization properties of null vectors and eigenvectors of matrices with i.i.d. subgaussian entries. Such properties describe quantitatively how "flat" is a vector and confirm one of the universality conjectures stating that distributions of eigenvectors of many classes of random matrices are close to the uniform distribution on the unit sphere. In particular, we get lower bounds on the smallest coordinates of eigenvectors, which are optimal as the case of Gaussian matrices shows. The talk is based on the joint work with Konstantin Tikhomirov.

Strong edge coloring of subcubic planar graphs

Series
Graph Theory Working Seminar
Time
Wednesday, February 6, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joshua SchroederGeorgia Tech

Strong edge coloring of a graph $G$ is a coloring of the edges of the graph such that each color class is an induced subgraph. The strong chromatic index of $G$ is the smallest number $k$ such that $G$ has a $k$-strong edge coloring. Erdős and Nešetřil conjecture that the strong chromatic index of a graph of max degree $\Delta$ is at most $5\Delta^2/4$ if $\Delta$ is even and $(5\Delta^2-2\Delta + 1)/4$ if $\Delta$ is odd. It is known for $\Delta=3$ that the conjecture holds, and in this talk I will present part of Anderson's proof that the strong chromatic index of a subcubic planar graph is at most $10$

Translation and Systems Biology: Mathematical and computational modeling at the frontier of biomedical research

Series
Job Candidate Talk
Time
Thursday, February 7, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gesham MagombedzeBaylor Institute for Immunology Research

A major challenge in clinical and biomedical research is on translating in-vitro and in- vivo model findings to humans. Translation success rate of all new compounds going through different clinical trial phases is generally about 10%. (i) This field is challenged by a lack of robust methods that can be used to translate model findings to humans (or interpret preclinical finds to accurately design successful patient regimens), hence providing a platform to evaluate a plethora of agents before they are channeled in clinical trials. Using set theory principles of mapping morphisms, we recently developed a novel translational framework that can faithfully map experimental results to clinical patient results. This talk will demonstrate how this method was used to predict outcomes of anti-TB drug clinical trials. (ii) Translation failure is deeply rooted in the dissimilarities between humans and experimental models used; wide pathogen isolates variation, patient population genetic diversities and geographic heterogeneities. In TB, bacteria phenotypic heterogeneity shapes differential antibiotic susceptibility patterns in patients. This talk will also demonstrate the application of dynamical systems in Systems Biology to model (a) gene regulatory networks and how gene programs influence Mycobacterium tuberculosis bacteria metabolic/phenotypic plasticity. (b) And then illustrate how different bacteria phenotypic subpopulations influence treatment outcomes and the translation of preclinical TB therapeutic regimens. In general, this talk will strongly showcase how mathematical modeling can be used to critically analyze experimental and patient data.

Interpolative decomposition and its applications

Series
School of Mathematics Colloquium
Time
Thursday, February 7, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Lexing YingStanford University
Interpolative decomposition is a simple and yet powerful tool for approximating low-rank matrices. After discussing the theory and algorithms, I will present a few new applications of interpolative decomposition in numerical partial differential equations, quantum chemistry, and machine learning.

Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential

Series
Stochastics Seminar
Time
Thursday, February 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Atilla YilmazTemple University
I will present joint work with Elena Kosygina and Ofer Zeitouni in which we prove the homogenization of a class of one-dimensional viscous Hamilton-Jacobi equations with random Hamiltonians that are nonconvex in the gradient variable. Due to the special form of the Hamiltonians, the solutions of these PDEs with linear initial conditions have representations involving exponential expectations of controlled Brownian motion in a random potential. The effective Hamiltonian is the asymptotic rate of growth of these exponential expectations as time goes to infinity and is explicit in terms of the tilted free energy of (uncontrolled) Brownian motion in a random potential. The proof involves large deviations, construction of correctors which lead to exponential martingales, and identification of asymptotically optimal policies.

Compactifying parameter spaces

Series
Intersection Theory Seminar
Time
Thursday, February 7, 2019 - 15:18 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tianyi ZhangGeorgia Tech
We continue the discussion of Chapter 8 in 3264 and All That. We will discuss complete quadrics, Hilbert schemes and Kontsevich spaces.

Convex Relaxation for Multimarginal Optimal Transport in Density Functional Theory

Series
Applied and Computational Mathematics Seminar
Time
Friday, February 8, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Lexing YingStanford University

We will go to lunch together after the talk with the graduate students.

We introduce methods from convex optimization to solve the multi-marginal transport type problems arise in the context of density functional theory. Convex relaxations are used to provide outer approximation to the set of N-representable 2-marginals and 3-marginals, which in turn provide lower bounds to the energy. We further propose rounding schemes to obtain upper bound to the energy.

Travel Behavior Modeling Using Machine Learning

Series
ACO Student Seminar
Time
Friday, February 8, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Xilei Zhao ISyE, Georgia Tech

The popularity of machine learning is increasingly growing in transportation, with applications ranging from traffic engineering to travel demand forecasting and pavement material modeling, to name just a few. Researchers often find that machine learning achieves higher predictive accuracy compared to traditional methods. However, many machine-learning methods are often viewed as “black-box” models, lacking interpretability for decision making. As a result, increased attention is being devoted to the interpretability of machine-learning results.

In this talk, I introduce the application of machine learning to study travel behavior, covering both mode prediction and behavioral interpretation. I first discuss the key differences between machine learning and logit models in modeling travel mode choice, focusing on model development, evaluation, and interpretation. Next, I apply the existing machine-learning interpretation tools and also propose two new model-agnostic interpretation tools to examine behavioral heterogeneity. Lastly, I show the potential of using machine learning as an exploratory tool to tune the utility functions of logit models.

I illustrate these ideas by examining stated-preference travel survey data for a new mobility-on-demand transit system that integrates fixed-route buses and on-demand shuttles. The results show that the best-performing machine-learning classifier results in higher predictive accuracy than logit models as well as comparable behavioral outputs. In addition, results obtained from model-agnostic interpretation tools show that certain machine-learning models (e.g. boosting trees) can readily account for individual heterogeneity and generate valuable behavioral insights on different population segments. Moreover, I show that interpretable machine learning can be applied to tune the utility functions of logit models (e.g. specifying nonlinearities) and to enhance their model performance. In turn, these findings can be used to inform the design of new mobility services and transportation policies.

Hamiltonian Cycles in Uniform Hypergraphs with Large Minimum Degree

Series
Combinatorics Seminar
Time
Friday, February 8, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrzej RucinskiEmory and AMU Poznań

Abstract: Reiher, Rödl, Ruciński, Schacht, and Szemerédi proved, via a modification of the absorbing method, that every 3-uniform $n$-vertex hypergraph, $n$ large, with minimum vertex degree at least $(5/9+\alpha)n^2/2$ contains a tight Hamiltonian cycle. Recently, owing to a further modification of the method, the same group of authors joined by Bjarne Schuelke, extended this result to 4-uniform hypergraphs with minimum pair degree at least, again, $(5/9+\alpha)n^2/2$. In my talk I will outline these proofs and point to the crucial ideas behind both modifications of the absorbing method.

Singularities of Lagrangian and Legendrian fronts

Series
Geometry Topology Seminar Pre-talk
Time
Monday, February 11, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel Álvarez-GavelaIAS
The semi-cubical cusp which is formed in the bottom of a mug when you shine a light on it is an everyday example of a caustic. In this talk we will become familiar with the singularities of Lagrangian and Legendrian fronts, also known as caustics in the mathematics literature, which have played an important role in symplectic and contact topology since the work of Arnold and his collaborators. For this purpose we will discuss some basic singularity theory, the method of generating families in cotangent bundles, the geometry of the front projection, the Legendrian Reidemeister theorem, and draw many pictures of the simplest examples.

Fun with Mac Lane valuations

Series
Algebra Seminar
Time
Monday, February 11, 2019 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrew ObusBaruch College, CUNY
Mac Lane's technique of "inductive valuations" is over 80 years old, but has only recently been used to attack problems about arithmetic surfaces. We will give an explicit, hands-on introduction to the theory, requiring little background beyond the definition of a non-archimedean valuation. We will then outline how this theory is helpful for resolving "weak wild" quotient singularities of arithmetic surfaces, as well as for proving conductor-discriminant inequalities for higher genus curves. The first project is joint work with Stefan Wewers, and the second is joint work with Padmavathi Srinivasan.

Convex-Nonconvex approach in segmentation and decomposition of scalar fields defined over triangulated surfaces

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 11, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Martin HuskaUniversity of bologna, Italy
In this talk, we will discuss some advantages of using non-convex penalty functions in variational regularization problems and how to handle them using the so-called Convex-Nonconvex approach. In particular, TV-like non-convex penalty terms will be presented for the problems in segmentation and additive decomposition of scalar functions defined over a 2-manifold embedded in \R^3. The parametrized regularization terms are equipped by a free scalar parameter that allows to tune their degree of non-convexity. Appropriate numerical schemes based on the Alternating Directions Methods of Multipliers procedure are proposed to solve the optimization problems.

Simplification of singularities of Lagrangian and Legendrian fronts

Series
Geometry Topology Seminar
Time
Monday, February 11, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel Álvarez-GavelaIAS
We will present an h-principle for the simplification of singularities of Lagrangian and Legendrian fronts. The h-principle says that if there is no homotopy theoretic obstruction to simplifying the singularities of tangency of a Lagrangian or Legendrian submanifold with respect to an ambient foliation by Lagrangian or Legendrian leaves, then the simplification can be achieved by means of a Hamiltonian isotopy. We will also discuss applications of the h-principle to symplectic and contact topology.

Global solutions of incompressible viscoelastic fluids with large velocity on low frequency part

Series
PDE Seminar
Time
Tuesday, February 12, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
skiles 006
Speaker
Ting ZhangZhejiang University

Abstract: In this talk, we consider the Cauchy problem of the N-dimensional incompressible viscoelastic fluids with N ≥ 2. It is shown that, in the low frequency part, this system possesses some dispersive properties derived from the one parameter group e∓itΛ. Based on this dispersive effect, we construct global solutions with large initial velocity concentrating on the low frequency part. Such kind of solution has never been seen before in the literature even for the classical incompressible Navier-Stokes equations. The proof relies heavily on the dispersive estimates for the system of acoustics, and a careful study of the nonlinear terms. And we also obtain the similar result for the isentropic compressible Navier-Stokes equations. Here, the initial velocity with arbitrary B⋅N 2 −1 2,1 norm of potential part P⊥u0 and large highly oscillating are allowed in our results. (Joint works with Daoyuan Fang and Ruizhao Zi)

Tropical h-vectors of polytopes

Series
Research Horizons Seminar
Time
Wednesday, February 13, 2019 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Josephine YuGeorgia Tech
For a polytope P, the h-vector is a vector of integers which can be calculated easily from the number of faces of P of each dimension. For simplicial polytopes, it is well known that the h-vector is symmetric (palindromic) and unimodal. However in general the h-numbers may even be negative. In this talk I will introduce the tropical h-vector of a polytope, which coincides with the usual h-vector of the dual polytope, if the polytope is simple. We will discuss how they are related to toric varieties, tropical geometry, and polytope algebra. I will also discuss some open problems.

Some results for functionals of Aharanov-Bohm type

Series
Analysis Seminar
Time
Wednesday, February 13, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LossGeorgia Tech
In this talk I present some variational problems of Aharanov-Bohm type, i.e., they include a magnetic flux that is entirely concentrated at a point. This is maybe the simplest example of a variational problems for systems, the wave function being necessarily complex. The functional is rotationally invariant and the issue to be discussed is whether the optimizer have this symmetry or whether it is broken.

Convex Geometry of the Truncated Moment Problem

Series
High Dimensional Seminar
Time
Wednesday, February 13, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greg BlekhermanGeorgia Tech

Moment problem is a classical question in real analysis, which asks whether a set of moments can be realized as integration of corresponding monomials with respect to a Borel measure. Truncated moment problem asks the same question given a finite set of moments. I will explain how some of the fundamental results in the truncated moment problem can be proved (in a very general setting) using elementary convex geometry. No familiarity with moment problems will be assumed. This is joint work with Larry Fialkow.

Polynomial to exponential transition in Ramsey theory

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, February 14, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dhruv MubayiUniversity of Illinois at Chicago
After a brief introduction to classical hypergraph Ramsey numbers, I will focus on the following problem. What is the minimum t such that there exist arbitrarily large k-uniform hypergraphs whose independence number is at most polylogarithmic in the number of vertices and every s vertices span at most t edges? Erdos and Hajnal conjectured (1972) that this minimum can be calculated precisely using a recursive formula and Erdos offered $500 for a proof. For k=3, this has been settled for many values of s, but it was not known for larger k. Here we settle the conjecture for all k at least 4. Our method also answers a question of Bhatt and Rodl about the maximum upper density of quasirandom hypergraphs. This is joint work with Alexander Razborov.

A tight net with respect to a random matrix norm and applications to estimating singular values

Series
Stochastics Seminar
Time
Thursday, February 14, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
G. LivshytsSOM, GaTech
In this talk we construct a net around the unit sphere with strong properties. We show that with exponentially high probability, the value of |Ax| on the sphere can be approximated well using this net, where A is a random matrix with independent columns. We apply it to study the smallest singular value of random matrices under very mild assumptions, and obtain sharp small ball behavior. As a partial case, we estimate (essentially optimally) the smallest singular value for matrices of arbitrary aspect ratio with i.i.d. mean zero variance one entries. Further, in the square case we show an estimate that holds only under simply the assumptions of independent entries with bounded concentration functions, and with appropriately bounded expected Hilbert-Schmidt norm. A key aspect of our results is the absence of structural requirements such as mean zero and equal variance of the entries.

The Proof of an Abstract Nash-Moser Implicit Function Theorem

Series
Dynamical Systems Working Seminar
Time
Friday, February 15, 2019 - 03:05 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Yian YaoGT Math
I will present a proof of an abstract Nash-Moser Implicit Function Theorem. This theorem can cope with derivatives which are not boundly invertible from one space to itself. The main technique is to combine Newton steps - which loses derivatives with some smoothing that restores them.

Contagion in random graphs and systemic risk

Series
Combinatorics Seminar
Time
Friday, February 15, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hamed AminiGeorgia State University
We provide a framework for testing the possibility of large cascades in random networks. Our results extend previous studies on contagion in random graphs to inhomogeneous directed graphs with a given degree sequence and arbitrary distribution of weights. This allows us to study systemic risk in financial networks, where we introduce a criterion for the resilience of a large network to the failure (insolvency) of a small group of institutions and quantify how contagion amplifies small shocks to the network.

2019 Georgia Scientific Computing Symposium

Series
Applied and Computational Mathematics Seminar
Time
Saturday, February 16, 2019 - 21:30 for 8 hours (full day)
Location
Skiles 005
Speaker
Various speakers GT, Emory, UGA and GSU

The Georgia Scientific Computing Symposium is a forum for professors, postdocs, graduate students and other researchers in Georgia to meet in an informal setting, to exchange ideas, and to highlight local scientific computing research. The symposium has been held every year since 2009 and is open to the entire research community.

This year, the symposium will be held on Saturday, February 16, 2019, at Georgia Institute of Technology. Please see

http://gtmap.gatech.edu/events/2019-georgia-scientific-computing-symposium

for more information

Periodic approximation of Lyapunov exponents for cocycles over hyperbolic systems.

Series
CDSNS Colloquium
Time
Monday, February 18, 2019 - 10:10 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Victoria SadovskayaPenn State
We consider a hyperbolic dynamical system (X,f) and a Holder continuous cocycle A over (X,f) with values in GL(d,R), or more generally in the group of invertible bounded linear operators on a Banach space. We discuss approximation of the Lyapunov exponents of A in terms of its periodic data, i.e. its return values along the periodic orbits of f. For a GL(d,R)-valued cocycle A, its Lyapunov exponents with respect to any ergodic f-invariant measure can be approximated by its Lyapunov exponents at periodic orbits of f. In the infinite-dimensional case, the upper and lower Lyapunov exponents of A can be approximated in terms of the norms of the return values of A at periodic points of f. Similar results are obtained in the non-uniformly hyperbolic setting, i.e. for hyperbolic invariant measures. This is joint work with B. Kalinin.

Local rigidity of Lyapunov spectrum for toral automorphisms

Series
CDSNS Colloquium
Time
Monday, February 18, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Boris KalininPenn State

We will discuss the regularity of the conjugacy between an Anosov automorphism L of a torus and its small perturbation. We assume that L has no more than two eigenvalues of the same modulus and that L^4 is irreducible over rationals. We consider a volume-preserving C^1-small perturbation f of L. We show that if the Lyapunov exponents of f with respect to the volume are the same as the Lyapunov exponents of L, then f is C^1+ conjugate to L. Further, we establish a similar result for irreducible partially hyperbolic automorphisms with two-dimensional center bundle. This is joint work with Andrey Gogolev and Victoria Sadovskaya

Symbolic Generic Initial Systems and Matroid Configurations

Series
Algebra Seminar
Time
Monday, February 18, 2019 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Robert Walker U Michigan
We survey dissertation work of my academic sister Sarah Mayes-Tang (2013 Ph.D.). As time allows, we aim towards two objectives. First, in terms of combinatorial algebraic geometry we weave a narrative from linear star configurations in projective spaces to matroid configurations therein, the latter being a recent development investigated by the quartet of Geramita -- Harbourne -- Migliore -- Nagel. Second, we pitch a prospectus for further work in follow-up to both Sarah's work and the matroid configuration investigation.

Low-rank matrix completion for the Euclidean distance geometry problem and beyond

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 18, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rongjie LaiRensselaer Polytechnic Institute
Abstract: The Euclidean distance geometry problem arises in a wide variety of applications, from determining molecular conformations in computational chemistry to localization in sensor networks. Instead of directly reconstruct the incomplete distance matrix, we consider a low-rank matrix completion method to reconstruct the associated Gram matrix with respect to a suitable basis. Computationally, simple and fast algorithms are designed to solve the proposed problem. Theoretically, the well known restricted isometry property (RIP) can not be satisfied in the scenario. Instead, a dual basis approach is considered to theoretically analyze the reconstruction problem. Furthermore, by introducing a new condition on the basis called the correlation condition, our theoretical analysis can be also extended to a more general setting to handle low-rank matrix completion problems under any given non-orthogonal basis. This new condition is polynomial time checkable and holds for many cases of deterministic basis where RIP might not hold or is NP-hard to verify. If time permits, I will also discuss a combination of low-rank matrix completion with geometric PDEs on point clouds to understanding manifold-structured data represented as incomplete inter-point distance data. This talk is based on:1. A. Tasissa, R. Lai, “Low-rank Matrix Completion in a General Non-orthogonal Basis”, arXiv:1812.05786 2018. 2. A. Tasissa, R. Lai, “Exact Reconstruction of Euclidean Distance Geometry Problem Using Low-rank Matrix Completion”, accepted, IEEE. Transaction on Information Theory, 2018. 3. R. Lai, J. Li, “Solving Partial Differential Equations on Manifolds From Incomplete Inter-Point Distance”, SIAM Journal on Scientific Computing, 39(5), pp. 2231-2256, 2017.

Heegaard Floer and the homology cobordism group

Series
Geometry Topology Seminar
Time
Monday, February 18, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jen HomGeorgia Tech
We show that the three-dimensional homology cobordism group admits an infinite-rank summand. It was previously known that the homology cobordism group contains an infinite-rank subgroup and a Z-summand. Our proof relies on the involutive Heegaard Floer package of Hendricks-Manolescu and Hendricks-Manolescu-Zemke. This is joint work with I. Dai, M. Stoffregen, and L. Truong.

On Bounding the Number of Automorphisms of a Tournament

Series
Graph Theory Working Seminar
Time
Tuesday, February 19, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael WigalGeorgia Tech
Let $g(n) = \max_{|T| = n}|\text{Aut}(T)|$ where $T$ is a tournament. Goldberg and Moon conjectured that $g(n) \le \sqrt{3}^{n-1}$ for all $n \ge 1$ with equality holding if and only if $n$ is a power of 3. Dixon proved the conjecture using the Feit-Thompson theorem. Alspach later gave a purely combinatorial proof. We discuss Alspach's proof and and some of its applications.

Topological Data Analysis, Automating Mapper for Novel Data

Series
Research Horizons Seminar
Time
Wednesday, February 20, 2019 - 00:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jennifer KlokeAyasdi
The Mapper algorithm constructs compressed representations of the underlying structure of data but involves a large number of parameters. To make the Mapper algorithm accessible to domain experts, automation of the parameter selection becomes critical. This talk will be accessible to graduate students.

AWM Lunch Talk Series - Anna Kirkpatrick: Markov Chain Monte Carlo and RNA Secondary Structure

Series
Other Talks
Time
Wednesday, February 20, 2019 - 12:00 for 30 minutes
Location
005
Speaker
Anna KirkpatrickGeorgia Tech
Understanding the structure of RNA is a problem of significant interest to biochemists. Thermodynamic energy functions are often key to this pursuit, but it is well-established that these energy functions do not perform well when applied to longer RNA sequences. This work specifically investigates the branching properties of RNA secondary structures, viewed as plane trees. By employing Markov chain Monte Carlo techniques, we sample from the probability distributions determined by these thermodynamic energy functions. We also investigate some of the challenges in employing Markov chain Monte Carlo, in particular the existence of local energy minima in transition graphs. This talk will give background, share preliminary results, and discuss future avenues of investigation.

The symmetric Gaussian isoperimetric inequality

Series
Analysis Seminar
Time
Wednesday, February 20, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Steven HeilmanUSC
It is well known that a Euclidean set of fixed Euclidean volume with least Euclidean surface area is a ball. For applications to theoretical computer science and social choice, an analogue of this statement for the Gaussian density is most relevant. In such a setting, a Euclidean set with fixed Gaussian volume and least Gaussian surface area is a half space, i.e. the set of points lying on one side of a hyperplane. This statement is called the Gaussian Isoperimetric Inequality. In the Gaussian Isoperimetric Inequality, if we restrict to sets that are symmetric (A= -A), then the half space is eliminated from consideration. It was conjectured by Barthe in 2001 that round cylinders (or their complements) have smallest Gaussian surface area among symmetric sets of fixed Gaussian volume. We discuss our result that says this conjecture is true if an integral of the curvature of the boundary of the set is not close to 1. https://arxiv.org/abs/1705.06643 http://arxiv.org/abs/1901.03934

Minimal gaussian partitions with applications

Series
High Dimensional Seminar
Time
Wednesday, February 20, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Steven HeilmanUSC

A single soap bubble has a spherical shape since it minimizes its surface area subject to a fixed enclosed volume of air. When two soap bubbles collide, they form a “double-bubble” composed of three spherical caps. The double-bubble minimizes total surface area among all sets enclosing two fixed volumes. This was proven mathematically in a landmark result by Hutchings-Morgan-Ritore-Ros and Reichardt using the calculus of variations in the early 2000s. The analogous case of three or more Euclidean sets is considered difficult if not impossible. However, if we replace Lebesgue measure in these problems with the Gaussian measure, then recent work of myself (for 3 sets) and of Milman-Neeman (for any number of sets) can actually solve these problems. We also use the calculus of variations. Time permitting, we will discuss an improvement to the Milman-Neeman result and applications to optimal clustering of data and to designing elections that are resilient to hacking. http://arxiv.org/abs/1901.03934

On Bounding the Number of Automorphisms of a Tournament

Series
Graph Theory Working Seminar
Time
Wednesday, February 20, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael WigalGeorgia Tech
Let $g(n) = \max_{|T| = n}|\text{Aut}(T)|$ where $T$ is a tournament. Goldberg and Moon conjectured that $g(n) \le \sqrt{3}^{n-1}$ for all $n \ge 1$ with equality holding if and only if $n$ is a power of 3. Dixon proved the conjecture using the Feit-Thompson theorem. Alspach later gave a purely combinatorial proof. We discuss Alspach's proof and and some of its applications.

Stationary coalescing walks on the lattice

Series
Stochastics Seminar
Time
Thursday, February 21, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Arjun KrishnanUniversity of Rochester
Consider a measurable dense family of semi-infinite nearest-neighbor paths on the integer lattice in d dimensions. If the measure on the paths is translation invariant, we completely classify their collective behavior in d=2 under mild assumptions. We use our theory to classify the behavior of families of semi-infinite geodesics in first- and last-passage percolation that come from Busemann functions. For d>=2, we describe the behavior of bi-infinite trajectories, and show that they carry an invariant measure. We also construct several examples displaying unexpected behavior. One of these examples lets us answer a question of C. Hoffman's from 2016. (joint work with Jon Chaika)

spectral equivalence classes based on isospectral reductions

Series
Dynamical Systems Working Seminar
Time
Friday, February 22, 2019 - 03:05 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Longmei ShuGT Math
Isospectral reductions on graphs remove certain nodes and change the weights of remaining edges. They preserve the eigenvalues of the adjacency matrix of the graph, their algebraic multiplicities and geometric multiplicities. They also preserve the eigenvectors. We call the graphs that can be isospectrally reduced to one same graph spectrally equivalent. I will give examples to show that two graphs can be spectrally equivalent or not based on the feature one picks for the equivalence class.

Field electron emission and the Fowler-Nordheim equation

Series
Math Physics Seminar
Time
Friday, February 22, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ian JauslinPrinceton University
Consider a metallic field emitter shaped like a thin needle, at the tip of which a large electric field is applied. Electrons spring out of the metal under the influence of the field. The celebrated and widely used Fowler-Nordheim equation predicts a value for the current outside the metal. In this talk, I will show that the Fowler-Nordheim equation emerges as the long-time asymptotic solution of a Schrodinger equation with a realistic initial condition, thereby justifying the use of the Fowler Nordheim equation in real setups. I will also discuss the rate of convergence to the Fowler-Nordheim regime.

Random perturbations of dynamical systems

Series
CDSNS Colloquium
Time
Monday, February 25, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yun YangCity Univ. NY
The real world is inherently noisy, and so it is natural to consider the random perturbations of deterministic dynamical systems and seek to understand the corresponding asymptotic behavior, i.e., the phenomena that can be observed under long-term iteration. In this talk, we will study the random perturbations of a family of circle maps $f_a$. We will obtain, a checkable, finite-time criterion on the parameter a for random perturbation of $f_a$ to exhibit a unique, and thus ergodic, stationary measure.

Joint GT-UGA Seminar at GT - Knot Traces and the Slice Genus

Series
Geometry Topology Seminar
Time
Monday, February 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lisa PiccirilloUT Austin
Smooth simply connected 4-manifolds can admit second homology classes not representable by smoothly embedded spheres; knot traces are the prototypical example of 4-manifolds with such classes. I will show that there are knot traces where the minimal genus smooth surface generating second homology is not of the canonical type, resolving question 1.41 on the Kirby problem list. I will also use the same tools to show that Conway knot does not bound a smooth disk in the four ball, which completes the classification of slice knots under 13 crossings and gives the first example of a non-slice knot which is both topologically slice and a positive mutant of a slice knot.

ACO Director Interview Seminar by Prasad Tetali

Series
Other Talks
Time
Monday, February 25, 2019 - 14:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prasad TetaliGeorgia Tech
Georgia Tech is leading the way in Creating the Next in higher education.In this talk I will present (1) My vision for ACO and (2) how my research relates naturally to ACO both where the A,C,O fields are going, and my own specific interests

Joint GT-UGA Seminar at GT - Knots in homology spheres, concordance, and crossing changes

Series
Geometry Topology Seminar
Time
Monday, February 25, 2019 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chris DavisU Wisconsin Eau Claire
Any knot in $S^3$ may be reduced to a slice knot by making some crossing changes. Indeed, this slice knot can be taken to be the unknot. We show that the same is true of knots in homology spheres, at least topologically. Something more complicated is true smoothly, as not every homology sphere bounds a smooth simply connected homology ball. We prove that a knot in a homology sphere is null-homotopic in a homology ball if and only if that knot can be reduced to the unknot by a sequence of concordances and crossing changes. We will show that there exist knot in a homology sphere which cannot be reduced to the unknot by any such sequence. As a consequence, there are knots in homology spheres which are not concordant to those examples produced by Levine in 2016 and Hom-Lidman-Levine in 2018.

Boundary regularity for the incompressible Navier-Stokes equations

Series
PDE Seminar
Time
Tuesday, February 26, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Hongjie DongBrown University
I will first give a short introduction of the Navier-Stokes equations, then review some previous results on theconditional regularity of solutions to the incompressible Navier-Stokes equations in the critical Lebesguespaces, and finally discuss some recent work which mainly addressed the boundary regularity issue.

Wiener-Hopf Factorization for Markov Processes

Series
Stochastics Seminar
Time
Tuesday, February 26, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
R. GongIllinois Institute of Technology

Wiener-Hopf factorization (WHf) encompasses several important results in probability and stochastic processes, as well as in operator theory. The importance of the WHf stems not only from its theoretical appeal, manifested, in part, through probabilistic interpretation of analytical results, but also from its practical applications in a wide range of fields, such as fluctuation theory, insurance and finance. The various existing forms of the WHf for Markov chains, strong Markov processes, Levy processes, and Markov additive process, have been obtained only in the time-homogeneous case. However, there are abundant real life dynamical systems that are modeled in terms of time-inhomogenous processes, and yet the corresponding Wiener-Hopf factorization theory is not available for this important class of models. In this talk, I will first provide a survey on the development of Wiener-Hopf factorization for time-homogeneous Markov chains, Levy processes, and Markov additive processes. Then, I will discuss our recent work on WHf for time-inhomogensous Markov chains. To the best of our knowledge, this study is the first attempt to investigate the WHf for time-inhomogeneous Markov processes.

Inference of evolutionary dynamics of heterogeneous cancer and viral populations

Series
Mathematical Biology Seminar
Time
Wednesday, February 27, 2019 - 11:01 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pavel SkumsGSU/CDC

Inference of evolutionary dynamics of heterogeneous cancer and viral populations Abstract: Genetic diversity of cancer cell populations and intra-host viral populations is one of the major factors influencing disease progression and treatment outcome. However, evolutionary dynamics of such populations remain poorly understood. Quantification of selection is a key step to understanding evolutionary mechanisms driving cancer and viral diseases. We will introduce a mathematical model and an algorithmic framework for inference of fitness landscapes of heterogeneous populations from genomic data. It is based on a maximal likelihood approach, whose objective is to estimate a vector of clone/strain fitnesses which better fits the observed tumor phylogeny, observed population structure and the dynamical system describing evolution of the population as a branching process. We will discuss our approach to solve the problem by transforming the original continuous maximum likelihood problem into a discrete optimization problem, which could be considered as a variant of scheduling problem with precedent constraints and with non-linear cumulative cost function.

Braid groups

Series
Research Horizons Seminar
Time
Wednesday, February 27, 2019 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dan MargalitGeorgia Tech
An element of the braid group can be visualized as a collection of n strings that are braided (like a hair braid). Braid groups are ubiquitous in mathematics in science, as they record the motions of a number of points in the plane. These points can be autonomous vehicles, particles in a 2-dimensional medium, or roots of a polynomial. We will give an introduction to and a survey of braid groups, and discuss what is known about homomorphisms between braid groups.

Schur multipliers in perturbation theory

Series
Analysis Seminar
Time
Wednesday, February 27, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anna SkripkaUniversity of New Mexico
Linear Schur multipliers, which act on matrices by entrywisemultiplications, as well as their generalizations have been studiedfor over a century and successfully applied in perturbation theory. Inthis talk, we will discuss extensions of Schur multipliers tomultilinear infinite dimensional transformations and then look intoapplications of the latter to approximation of operator functions.

Estimates for multilinear Schur multipliers

Series
High Dimensional Seminar
Time
Wednesday, February 27, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anna SkripkaUniversity of New mexico

Linear Schur multipliers, which act on matrices by entrywisemultiplications, as well as their generalizations have been studiedfor over a century and successfully applied in perturbation theory (asdemonstrated in the previous talk). In this talk, we will discussestimates for finite dimensional multilinear Schur multipliersunderlying these applications.

Joint distribution of Busemann functions for the corner growth model

Series
Stochastics Seminar
Time
Thursday, February 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wai Tong (Louis) FanIndiana University, Bloomington
We present the joint distribution of the Busemann functions, in all directions of growth, of the exactly solvable corner growth model (CGM). This gives a natural coupling of all stationary CGMs and leads to new results about geodesics. Properties of this joint distribution are accessed by identifying it as the unique invariant distribution of a multiclass last passage percolation model. This is joint work with Timo Seppäläinen.

Local Guarantees in Graph Cuts and Clustering

Series
ACO Student Seminar
Time
Friday, March 1, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Roy SchwartzCS, Technion

Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Minimum s-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization.

Here, we are given a graph with edges labeled + or - and the goal is to produce a clustering that agrees with the labels as much as possible: + edges within clusters and - edges across clusters.

The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective, e.g., minimizing the total number of disagreements or maximizing the total number of agreements.

We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective.

This naturally gives rise to a family of basic min-max graph cut problems.

A prototypical representative is Min-Max s-t Cut: find an s-t cut minimizing the largest number of cut edges incident on any node.

In this talk we will give a short introduction of Correlation Clustering and discuss the following results:

  1. an O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems)
  2. a remarkably simple 7-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 48)
  3. a (1/(2+epsilon))-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the (1/(4+epsilon))-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games.

Joint work with Moses Charikar and Neha Gupta.

A partial order on nu+ equivalence classes

Series
Geometry Topology Seminar Pre-talk
Time
Monday, March 4, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 257
Speaker
Kouki SatoUniversity of Tokyo
I will review the definition of nu+ equivalence, which is an equivalence relation on the knot concordance group, and introduce a partial order on the equivalence classes. This partial order is preserved by all satellite maps and some concordance invariants. We also consider full-twist operations and its relationship to the partial order.

Chow rings of matroids, ring of matroid quotients, and beyond

Series
Algebra Seminar
Time
Monday, March 4, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chris EurUniversity of California, Berkeley
We introduce a certain nef generating set for the Chow ring of the wonderful compactification of a hyperplane arrangement complement. This presentation yields a monomial basis of the Chow ring that admits a geometric and combinatorial interpretation with several applications. Geometrically, one can recover Poincare duality, compute the volume polynomial, and identify a portion of a polyhedral boundary of the nef cone. Combinatorially, one can generalize Postnikov's result on volumes of generalized permutohedra, prove Mason's conjecture on the log-concavity of independent sets for certain matroids, and define a new valuative invariant of a matroid that measures its closeness to uniform matroids. This is an on-going joint work with Connor Simpson and Spencer Backman.

The nu+ equivalence class of genus one knots

Series
Geometry Topology Seminar
Time
Monday, March 4, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Kouki SatoUniversity of Tokyo
The nu+ equivalence is an equivalence relation on the knot concordance group. It is known that the equivalence can be seen as a certain stable equivalence on knot Floer complexes, and many concordance invariants derived from Heegaard Floer theory are invariant under the equivalence. In this talk, we show that any genus one knot is nu+ equivalent to one of the unknot, the trefoil and its mirror.

Field Theoretical Interpretation of QM Wave Functions and Quantum Mechanism of High Tc Superconductivity

Series
PDE Seminar
Time
Tuesday, March 5, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Shouhong WangIndiana University

First, we introduce a new field theoretical interpretation of quantum mechanical wave functions, by postulating that the wave function is the common wave function for all particles in the same class determined by the external potential V, of the modulus of the wave function represents the distribution density of the particles, and the gradient of phase of the wave function provides the velocity field of the particles. Second, we show that the key for condensation of bosonic particles is that their interaction is sufficiently weak to ensure that a large collection of boson particles are in a state governed by the same condensation wave function field under the same bounding potential V. For superconductivity, the formation of superconductivity comes down to conditions for the formation of electron-pairs, and for the electron-pairs to share a common wave function. Thanks to the recently developed PID interaction potential of electrons and the average-energy level formula of temperature, these conditions for superconductivity are explicitly derived. Furthermore, we obtain both microscopic and macroscopic formulas for the critical temperature. Third, we derive the field and topological phase transition equations for condensates, and make connections to the quantum phase transition, as a topological phase transition. This is joint work with Tian Ma.

On the reconstruction error of PCA

Series
Stochastics Seminar
Time
Tuesday, March 5, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 168
Speaker
Martin WahlHumboldt University, Berlin.

We identify principal component analysis (PCA) as an empirical risk minimization problem with respect to the reconstruction error and prove non-asymptotic upper bounds for the corresponding excess risk. These bounds unify and improve existing upper bounds from the literature. In particular, they give oracle inequalities under mild eigenvalue conditions. We also discuss how our results can be transferred to the subspace distance and, for instance, how our approach leads to a sharp $\sin \Theta$ theorem for empirical covariance operators. The proof is based on a novel contraction property, contrasting previous spectral perturbation approaches. This talk is based on joint works with Markus Reiß and Moritz Jirak.

A restriction estimate in $\mathbb{R}^3$

Series
Analysis Seminar
Time
Wednesday, March 6, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hong WangMIT

If $f$ is a function supported on a truncated paraboloid, what can we say about $Ef$, the Fourier transform of f? Stein conjectured in the 1960s that for any $p>3$, $\|Ef\|_{L^p(R^3)} \lesssim \|f\|_{L^{\infty}}$.

We make a small progress toward this conjecture and show that it holds for $p> 3+3/13\approx 3.23$. In the proof, we combine polynomial partitioning techniques introduced by Guth and the two ends argument introduced by Wolff and Tao.

Global Convergence of Neuron Birth-Death Dynamics

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, March 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joan Bruna Estrach New York University
Neural networks with a large number of parameters admit a mean-field description, which has recently served as a theoretical explanation for the favorable training properties of "overparameterized" models. In this regime, gradient descent obeys a deterministic partial differential equation (PDE) that converges to a globally optimal solution for networks with a single hidden layer under appropriate assumptions. In this talk, we propose a non-local mass transport dynamics that leads to a modified PDE with the same minimizer. We implement this non-local dynamics as a stochastic neuronal birth-death process and we prove that it accelerates the rate of convergence in the mean-field limit. We subsequently realize this PDE with two classes of numerical schemes that converge to the mean-field equation, each of which can easily be implemented for neural networks with finite numbers of parameters. We illustrate our algorithms with two models to provide intuition for the mechanism through which convergence is accelerated. Joint work with G. Rotskoff (NYU), S. Jelassi (Princeton) and E. Vanden-Eijnden (NYU).

Packing and covering triangles

Series
Graph Theory Working Seminar
Time
Wednesday, March 6, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Youngho YooGeorgia Tech

Let $\nu$ denote the maximum size of a packing of edge-disjoint triangles in a graph $G$. We can clearly make $G$ triangle-free by deleting $3\nu$ edges. Tuza conjectured in 1981 that $2\nu$ edges suffice, and proved it for planar graphs. The best known general bound is $(3-\frac{3}{23})\nu$ proven by Haxell in 1997. We will discuss this proof and some related results.

1-d parabolic Anderson model with rough spatial noise

Series
Stochastics Seminar
Time
Thursday, March 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Samy TindelPurdue University
In this talk I will first recall some general facts about the parabolic Anderson model (PAM), which can be briefly described as a simple heat equation in a random environment. The key phenomenon which has to be observed in this context is called localization. I will review some ways to express this phenomenon, and then single out the so called eigenvectors localization for the Anderson operator. This particular instance of localization motivates our study of large time asymptotics for the stochastic heat equation. In the second part of the talk I will describe the Gaussian environment we consider, which is rougher than white noise, then I will give an account on the asymptotic exponents we obtain as time goes to infinity. If time allows it, I will also give some elements of proof.

Measure-valued splines and matrix optimal transport

Series
GT-MAP Seminar
Time
Friday, March 8, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Yongxin ChenGT AE

Two recent extensions of optimal mass transport theory will be covered. In the first part of the talk, we will discuss measure-valued spline, which generalizes the notion of cubic spline to the space of distributions. It addresses the problem to smoothly interpolate (empirical) probability measures. Potential applications include time sequence interpolation or regression of images, histograms or aggregated datas. In the second part of the talk, we will introduce matrix-valued optimal transport. It extends the optimal transport theory to handle matrix-valued densities. Several instances are quantum states, color images, diffusion tensor images and multi-variate power spectra. The new tool is expected to have applications in these domains. We will focus on theoretical side of the stories in both parts of the talk.

Mathapalooza!

Series
Other Talks
Time
Saturday, March 9, 2019 - 13:00 for 4 hours (half day)
Location
Ebster Recreation Center, Decatur
Speaker
Evans Harrell, Matt Baker, and GT Club Math, among othersGeorgia Tech, Emory, and others

Mathapalooza! is simultaneously a Julia Robinson Mathematics Festival and an event of the Atlanta Science Festival. There will be puzzles and games, a magic show by Matt Baker, mathematically themed courtroom skits by GT Club Math, a presentation about math and dance by Manuela Manetta, a presentation about math and music by David Borthwick, and a gallery of mathematical art curated by Elisabetta Matsumoto. It is free, and we anticipate engaging hundreds of members of the public in the wonders of mathematics. More info at https://mathematics-in-motion.org/about/Be there or B^2 !

Spheres in 4-manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, March 11, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 257
Speaker
Hannah SchwartzBryn Mawr
In this talk, we will examine the relationship between homotopy, topological isotopy, and smooth isotopy of surfaces in 4-manifolds. In particular, we will discuss how to produce (1) examples of topologically but not smoothly isotopic spheres, and (2) a smooth isotopy from a homotopy, under special circumstances (i.e. Gabai's recent work on the ``4D Lightbulb Theorem").

Sectional monodromy groups of projective curves

Series
Algebra Seminar
Time
Monday, March 11, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Borys KadetsMIT

Let X be a degree d curve in the projective space P^r.

A general hyperplane H intersects X at d distinct points; varying H defines a monodromy action on X∩H. The resulting permutation group G is the sectional monodromy group of X. When the ground field has characteristic zero the group G is known to be the full symmetric group.

By work of Harris, if G contains the alternating group, then X satisfies a strengthened Castelnuovo's inequality (relating the degree and the genus of X).

The talk is concerned with sectional monodromy groups in positive characteristic. I will describe all non-strange non-degenerate curves in projective spaces of dimension r>2 for which G is not symmetric or alternating. For a particular family of plane curves, I will compute the sectional monodromy groups and thus answer an old question on Galois groups of generic trinomials.

Using 2-torsion to obstruct topological isotopy

Series
Geometry Topology Seminar
Time
Monday, March 11, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Hannah SchwartzBryn Mawr
It is well known that two knots in S^3 are ambiently isotopic if and only if there is an orientation preserving automorphism of S^3 carrying one knot to the other. In this talk, we will examine a family of smooth 4-manifolds in which the analogue of this fact does not hold, i.e. each manifold contains a pair of smoothly embedded, homotopic 2-spheres that are related by a diffeomorphism, but are not smoothly isotopic. In particular, the presence of 2-torsion in the fundamental groups of these 4-manifolds can be used to obstruct even a topological isotopy between the 2-spheres; this shows that Gabai's recent ``4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis.

Coloring graphs with no K5-subdivision: disjoint paths in graphs

Series
Dissertation Defense
Time
Tuesday, March 12, 2019 - 10:00 for 1.5 hours (actually 80 minutes)
Location
203 Classroom D.M. Smith
Speaker
Qiqin XieGeorgia Institute of Technology
The Four Color Theorem states that every planar graph is 4-colorable. Hajos conjectured that for any positive integer k, every graph containing no K_{k+1}-subdivision is k-colorable. However, Catlin disproved Hajos' conjecture for k >= 6. It is not hard to prove that the conjecture is true for k <= 3. Hajos' conjecture remains open for k = 4 and k = 5. We consider a minimal counterexample to Hajos' conjecture for k = 4: a graph G, such that G contains no K_5-subdivision, G is not 4-colorable, and |V (G)| is minimum. We use Hajos graph to denote such counterexample. One important step to understand graphs containing K_5-subdivisions is to solve the following problem: let H represent the tree on six vertices, two of which are adjacent and of degree 3. Let G be a graph and u1, u2, a1, a2, a3, a4 be distinct vertices of G. When does G contain a topological H (i.e. an H-subdivision) in which u1, u2 are of degree 3 and a1, a2, a3, a4 are of degree 1? We characterize graphs with no topological H. This characterization is used by He, Wang, and Yu to show that graph containing no K_5-subdivision is planar or has a 4-cut, establishing conjecture of Kelmans and Seymour. Besides the topological H problem, we also obtained some further structural information of Hajos graphs.

Comparison of sequences generated by a hidden Markov model

Series
Dissertation Defense
Time
Tuesday, March 12, 2019 - 13:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
George KerchevGeorgia Tech
The length LC_n of the longest common subsequences of two strings X = (X_1, ... , X_n) and Y = (Y_1, ... , Y_n) is a way to measure the similarity between X and Y. We study the asymptotic behavior of LC_n when the two strings are generated by a hidden Markov model (Z, (X, Y)) and we build upon asymptotic results for LC_n obtained for sequences of i.i.d. random variables. Under some standard assumptions regarding the model we first prove convergence results with rates for E[LC_n]. Then, versions of concentration inequalities for the transversal fluctuations of LC_n are obtained. Finally, we outline a proof for a central limit theorem by building upon previous work and adapting a Stein's method estimate.

Eulerian dynamics with alignment interactions

Series
PDE Seminar
Time
Tuesday, March 12, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Changhui TanUniversity of South Carolina
The Euler-Alignment system arises as a macroscopic representation of the Cucker-Smale model, which describes the flocking phenomenon in animal swarms. The nonlinear and nonlocal nature of the system bring challenges in studying global regularity and long time behaviors. In this talk, I will discuss the global wellposedness of the Euler-Alignment system with three types of nonlocal alignment interactions: bounded, strongly singular, and weakly singular interactions. Different choices of interactions will lead to different global behaviors. I will also discuss interesting connections to some fluid dynamics systems, including the fractional Burgers equation, and the aggregation equation.

The Bishop-Phelps-Bolloba ́s Property for Numerical Radius in the space of summable sequnces

Series
Analysis Seminar
Time
Wednesday, March 13, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Olena KozhushkinaUrsinus college
The Bishop-Phelps-Bolloba ́s property for numerical radius says that if we have a point in the Banach space and an operator that almost attains its numerical radius at this point, then there exist another point close to the original point and another operator close to the original operator, such that the new operator attains its numerical radius at this new point. We will show that the set of bounded linear operators from a Banach space X to X has a Bishop-Phelps-Bolloba ́s property for numerical radius whenever X is l1 or c0. We will also discuss some constructive versions of the Bishop-Phelps- Bolloba ́s theorem for l1(C), which are an essential tool for the proof of this result.

Strong edge colorings and edge cuts

Series
Graph Theory Working Seminar
Time
Wednesday, March 13, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
James AndersonGeorgia Tech
Erdős and Nešetřil conjectured in 1985 that every graph with maximum degree Δ can be strong edge colored using at most 5/4 Δ^2 colors. The conjecture is still open for Δ=4. We show the conjecture is true when an edge cut of size 1 or 2 exists, and in certain cases when an edge cut of size 4 or 3 exists.

TBA by

Series
Stochastics Seminar
Time
Thursday, March 14, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
TBASOM, GaTech

Clustered coloring for old coloring conjectures

Series
ACO Alumni Lecture
Time
Thursday, March 14, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chun-Hung LiuTexas A&amp;amp;M

Hadwiger (Hajos and Gerards and Seymour, respectively) conjectured that the vertices of every graph with no K_{t+1} minor (topological minor and odd minor, respectively) can be colored with t colors such that any pair of adjacent vertices receive different colors. These conjectures are stronger than the Four Color Theorem and are either wide open or false in general. A weakening of these conjectures is to consider clustered coloring which only requires every monochromatic component to have bounded size instead of size 1. It is known that t colors are still necessary for the clustered coloring version of those three conjectures. Joint with David Wood, we prove a series of tight results about clustered coloring on graphs with no subgraph isomorphic to a fixed complete bipartite graph. These results have a number of applications. In particular, they imply that the clustered coloring version of Hajos' conjecture is true for bounded treewidth graphs in a stronger sense: K_{t+1} topological minor free graphs of bounded treewidth are clustered t-list-colorable. They also lead to the first linear upper bound for the clustered coloring version of Hajos' conjecture and the currently best upper bound for the clustered coloring version of the Gerards-Seymour conjecture.

Divisors on metric graphs and constructing tropicalizations of Mumford curves

Series
Student Algebraic Geometry Seminar
Time
Friday, March 15, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech
I will introduce briefly the notion of Berkovich analytic spaces and certain metric graphs associated to them called the skeleton. Then we will describe divisors on metric graphs and a lifting theorem that allows us to find tropicalizations of curves in P^3. This is joint work with Philipp Jell.

Schubert Galois Groups

Series
Algebra Seminar
Time
Friday, March 15, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Frank SottileTexas A&amp;amp;M
Problems from enumerative geometry have Galois groups. Like those from field extensions, these Galois groups reflect the internal structure of the original problem. The Schubert calculus is a class of problems in enumerative geometry that is very well understood, and may be used as a laboratory to study new phenomena in enumerative geometry.I will discuss this background, and sketch a picture that is emerging from a sustained study of Schubert problems from the perspective of Galois theory. This includes a conjecture concerning the possible Schubert Galois groups, a partial solution of the inverse Galois problem, as well as glimpses of the outline of a possible classification of Schubert problems for their Galois groups.

The interaction of gaps with the boundary in dimer systems --- a heat flow conjecture

Series
Math Physics Seminar
Time
Friday, March 15, 2019 - 14:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mihai CiucuMathematics Department, Indiana University
We consider a triangular gap of side two in a 90 degree angle on the triangular lattice with mixed boundary conditions: a constrained, zig-zag boundary along one side, and a free lattice line boundary along the other. We study the interaction of the gap with thecorner as the rest of the angle is completely filled with lozenges. We show that the resulting correlation is governed by the product of the distances between the gap and its three images in the sides of the angle. This, together with a few other results we worked out previously, provides evidence for a unified way of understanding the interaction of gaps with the boundary under mixed boundary conditions, which we present as a conjecture. Our conjecture is phrased in terms of the steady state heat flow problem in a uniform block of material in which there are a finite number of heat sources and sinks. This new physical analogy is equivalent in the bulk to the electrostatic analogy we developed in previous work, but arises as the correct one for the correlation with the boundary.The starting point for our analysis is an exact formula we prove for the number of lozenge tilings of certain trapezoidal regions with mixed boundary conditions, which is equivalent to a new, multi-parameter generalization of a classical plane partition enumeration problem (that of enumerating symmetric, self-complementary plane partitions).

Mixing and the local limit theorem for hyperbolic dynamical systems

Series
Math Physics Seminar
Time
Friday, March 15, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter NandoriUniversity of Maryland
We present a convenient joint generalization of mixing and the local central limit theorem which we call MLLT. We review results on the MLLT for hyperbolic maps and present new results for hyperbolic flows. Then we apply these results to prove global mixing properties of some mechanical systems. These systems include various versions of the Lorentz gas (periodic one; locally perturbed; subject to external fields), the Galton board and pingpong models. Finally, we present applications to random walks in deterministic scenery. This talk is based on joint work with D. Dolgopyat and partially with M. Lenci.

Cohen-Macaulayness of invariant rings is determined by inertia groups

Series
Algebra Seminar
Time
Monday, March 25, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ben Blum-SmithNYU

If a finite group $G$ acts on a Cohen-Macaulay ring $A$, and the order of $G$ is a unit in $A$, then the invariant ring $A^G$ is Cohen-Macaulay as well, by the Hochster-Eagon theorem. On the other hand, if the order of $G$ is not a unit in $A$ then the Cohen-Macaulayness of $A^G$ is a delicate question that has attracted research attention over the last several decades, with answers in several special cases but little general theory. In this talk we show that the statement that $A^G$ is Cohen-Macaulay is equivalent to a statement quantified over the inertia groups for the action of G$ on $A$ acting on strict henselizations of appropriate localizations of $A$. In a case of long-standing interest—a permutation group acting on a polynomial ring—we show how this can be applied to find an obstruction to Cohen-Macaulayness that allows us to completely characterize the permutation groups whose invariant ring is Cohen-Macaulay regardless of the ground field. This is joint work with Sophie Marques.

Joint GT-UGA Seminar at UGA - A spectral sequence from Khovanov homology to knot Floer homology

Series
Geometry Topology Seminar
Time
Monday, March 25, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Nathan DowlinDartmouth
Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.

Stochastic models for the transmission and establishment of HIV infection

Series
Mathematical Biology Seminar
Time
Wednesday, March 27, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dan CoombsUBC (visiting Emory)
The likelihood of HIV infection following risky contact is believed to be low. This suggests that the infection process is stochastic and governed by rare events. I will present mathematical branching process models of early infection and show how we have used them to gain insights into the duration of the undetectable phase of HIV infection, the likelihood of success of pre- and post-exposure prophylaxis, and the effects of prior infection with HSV-2. Although I will describe quite a bit of theory, I will try to keep giant and incomprehensible formulae to a minimum.

Energy minimization on the sphere.

Series
Analysis Seminar
Time
Wednesday, March 27, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dmitry BilykUniversity of Minnesota

Many problems of spherical discrete and metric geometry may be reformulated as energy minimization problems and require techniques that stem from harmonic analysis, potential theory, optimization etc. We shall discuss several such problems as well of applications of these ideas to combinatorial geometry, discrepancy theory, signal processing etc.

Iterative linear solvers and random matrices: new bounds for the block Gaussian sketch and project method.

Series
High Dimensional Seminar
Time
Wednesday, March 27, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebrovaUCLA

<br />

One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.
I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.

 

Iterative linear solvers and random matrices: new bounds for the block Gaussian sketch and project method

Series
Stochastics Seminar
Time
Wednesday, March 27, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebrovaUCLA

One of the most famous methods for solving large-scale over-determined linear systems is Kaczmarz algorithm, which iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method using correct randomization of the process is due to Strohmer and Vershynin (2009). Many extensions and generalizations of the method were proposed since then, including the works of Needell, Tropp, Ward, Srebro, Tan and many others. An interesting unifying view on a number of iterative solvers (including several versions of the Kaczmarz algorithm) was proposed by Gower and Richtarik in 2016. The main idea of their sketch-and-project framework is the following: one can observe that the random selection of a row (or a row block) can be represented as a sketch, that is, left multiplication by a random vector (or a matrix), thereby pre-processing every iteration of the method, which is represented by a projection onto the image of the sketch.

I will give an overview of some of these methods, and talk about the role that random matrix theory plays in the showing their convergence. I will also discuss our new results with Deanna Needell on the block Gaussian sketch and project method.

Remez inequalities for solutions of elliptic PDEs

Series
School of Mathematics Colloquium
Time
Thursday, March 28, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eugenia MalinnikovaNorwegian University of Science and Technology
The Remez inequality for polynomials quantifies the way the maximum of a polynomial over an interval is controlled by its maximum over a subset of positive measure. The coefficient in the inequality depends on the degree of the polynomial; the result also holds in higher dimensions. We give a version of the Remez inequality for solutions of second order linear elliptic PDEs and their gradients. In this context, the degree of a polynomial is replaced by the Almgren frequency of a solution. We discuss other results on quantitative unique continuation for solutions of elliptic PDEs and their gradients and give some applications for the estimates of eigenfunctions for the Laplace-Beltrami operator. The talk is based on a joint work with A. Logunov.

On the number of cliques in graphs with a forbidden clique minor

Series
Graph Theory Seminar
Time
Thursday, March 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fan WeiStanford University
Reed and Wood and independently Norine, Seymour, Thomas, and Wollan showed that for each $t$ there is $c(t)$ such that every graph on $n$ vertices with no $K_t$ minor has at most $c(t)n$ cliques. Wood asked in 2007 if $c(t)

Constructive regularization of the random matrix norm

Series
Stochastics Seminar
Time
Thursday, March 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Liza RebovaMathematics, UCLA

I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.
Im am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.

Long-range order in random colorings and random graph homomorphisms in high dimensions

Series
Combinatorics Seminar
Time
Friday, March 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yinon SpinkaUniversity of British Columbia, Vancouver, Canada

Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.

Gattaca

Series
Algebra Seminar
Time
Saturday, March 30, 2019 - 14:00 for 8 hours (full day)
Location
Atlanta
Speaker
Georgia Tech Tropical Arithmetic and Combinatorial Algebraic-geometryGeorgia Institute of Technology

This is a two day conference (March 30-31) to be held at Georgia Tech on algebraic geometry and related areas. We will have talks by Sam Payne, Eric Larson, Angelica Cueto, Rohini Ramadas, and Jennifer Balakrishnan. See https://sites.google.com/view/gattaca/home for more information.

Specialization Models of Network Growth

Series
CDSNS Colloquium
Time
Monday, April 1, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ben WebbBYU

One of the characteristics observed in real networks is that, as a network's topology evolves so does the network's ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. We introduce a model of network growth based on this notion of specialization and show that as a network is specialized its topology becomes increasingly modular, hierarchical, and sparser, each of which are properties observed in real networks. This model is also highly flexible in that a network can be specialized over any subset of its components. By selecting these components in various ways we find that a network's topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity, power-law like degree distributions and clustering coefficients. This growth model also maintains the basic spectral properties of a network, i.e. the eigenvalues and eigenvectors associated with the network's adjacency network. This allows us in turn to show that a network maintains certain dynamic properties as the network's topology becomes increasingly complex due to specialization.

Doubly slice Montesinos links

Series
Geometry Topology Seminar Pre-talk
Time
Monday, April 1, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ahmad IssaUniversity of Texas, Austin

A link in the 3-sphere is doubly slice if it is the cross-section of an unknotted 2-sphere in the 4-sphere. The double branched cover of a doubly slice link is a 3-manifold which embeds in the 4-sphere. For doubly slice Montesinos links, this produces embeddings of Seifert fibered spaces in S^4. In this pre-talk, I'll discuss a construction and an obstruction to being doubly slice.

Combinatorics of line arrangements on tropical cubic surfaces

Series
Algebra Seminar
Time
Monday, April 1, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Maria Angelica CuetoOhio State University

The classical statement that there are 27 lines on every smooth cubic surface in $\mathbb{P}^3$ fails to hold under tropicalization: a tropical cubic surface in $\mathbb{TP}^3$ often contains infinitely many tropical lines. This pathology can be corrected by reembedding the cubic surface in $\mathbb{P}^{44}$ via the anticanonical bundle.

Under this tropicalization, the 27 classical lines become an arrangement of metric trees in the boundary of the tropical cubic surface in $\mathbb{TP}^{44}$. A remarkable fact is that this arrangement completely determines the combinatorial structure of the corresponding tropical cubic surface. In this talk, we will describe their metric and topological type as we move along the moduli space of tropical cubic surfaces. Time permitting, we will discuss the matroid that emerges from their tropical convex hull.

This is joint work with Anand Deopurkar.

Shape dynamics of point vortices

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 1, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Tomoki OhsawaUT Dallas
We present a Hamiltonian formulation of the dynamics of the ``shape'' of N point vortices on the plane and the sphere: For example, if N=3, it is the dynamics of the shape of the triangle formed by three point vortices, regardless of the position and orientation of the triangle on the plane/sphere.For the planar case, reducing the basic equations of point vortex dynamics by the special Euclidean group SE(2) yields a Lie-Poisson equation for relative configurations of the vortices. Particularly, we show that the shape dynamics is periodic in certain cases. We extend the approach to the spherical case by first lifting the dynamics from the two-sphere to C^2 and then performing reductions by symmetries.

Embedding Seifert fibered spaces in the 4-sphere

Series
Geometry Topology Seminar
Time
Monday, April 1, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ahmad IssaUniversity of Texas, Austin

Which 3-manifolds smoothly embed in the 4-sphere? This seemingly simple question turns out to be rather subtle. Using Donaldson's theorem, we derive strong restrictions to embedding a Seifert fibered space over an orientable base surface, which in particular gives a complete classification when e > k/2, where k is the number of exceptional fibers and e is the normalized central weight. Our results point towards a couple of interesting conjectures which I'll discuss. This is joint work with Duncan McCoy.

Hidden symmetries of the hydrogen atom

Series
School of Mathematics Colloquium
Time
Tuesday, April 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
John BaezUC Riverside
A classical particle moving in an inverse square central force, like a planet in the gravitational field of the Sun, moves in orbits that do not precess. This lack of precession, special to the inverse square force, indicates the presence of extra conserved quantities beyond the obvious ones. Thanks to Noether's theorem, these indicate the presence of extra symmetries. It turns out that not only rotations in 3 dimensions, but also in 4 dimensions, act as symmetries of this system. These extra symmetries are also present in the quantum version of the problem, where they explain some surprising features of the hydrogen atom. The quest to fully understand these symmetries leads to some fascinating mathematical adventures.

Validity of Steady Prandtl Expansio

Series
PDE Seminar
Time
Tuesday, April 2, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
skiles 006
Speaker
Professor Yan GuoBrown University

In a joint work with Sameer Iyer, the validity of steady Prandtl layer expansion is established in a channel. Our result covers the celebrated Blasius boundary layer profile, which is based on uniform quotient estimates for the derivative Navier-Stokes equations, as well as a positivity estimate at the flow entrance.

Equivalence of SRB and physical measures for stochastic dynamical systems

Series
CDSNS Colloquium
Time
Wednesday, April 3, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex BlumenthalUniversith of Maryland

It is anticipated that the invariant statistics of many of smooth dynamical systems with a `chaotic’ asymptotic character are given by invariant measures with the SRB property- a geometric property of invariant measures which, roughly, means that the invariant measure is smooth along unstable directions. However, actually verifying the existence of SRB measures for concrete systems is extremely challenging: indeed, SRB measures need not exist, even for systems exhibiting asymptotic hyperbolicity (e.g., the figure eight attractor).

The study of asymptotic properties for dynamical systems in the presence of noise is considerably simpler. One manifestation of this principle is the theorem of Ledrappier and Young ’89, where it was proved that under very mild conditions, stationary measures for a random dynamical system with a positive Lyapunov exponent are automatically random SRB measures (that is, satisfy the random analogue of the SRB property). I will talk today about a new proof of this result in a joint work with Lai-Sang Young. This new proof has the benefit of being (1) conceptually lucid and to-the-point (the original proof is somewhat indirect) and (2) potentially easily adapted to more general settings, e.g., to appropriate infinite-dimensional random dynamics, such as time-t solutions to certain classes SPDE (this generalization is an ongoing work, joint with LSY).

MATHEMATICAL BILLIARDS: Geometry, dynamics, number theory, probability

Series
Research Horizons Seminar
Time
Wednesday, April 3, 2019 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonid BunimovichGeorgia Tech

Mathematical billiards naturally arise in mechanics, optics, acoustics, etc. They also form the most visual class of dynamical systems with evolution covering all the possible spectrum of behaviours from integrable (extremely regular) to strongly chaotic. Billiard is a (deterministic) dynamical system generated by an uniform (by inertia) motion of a point particle within a domain with piecewise smooth walls ("a billiard table"). I will introduce all needed notions on simple examples and outline some open problems. This talk is also a preparatory talk to a Mathematical Physics seminar (on Monday April 8) where a new direction of research will be discussed which consider physical billiards where instead of a point (mathematical) particle a real physical hard sphere moves. To a complete surprise of mathematicians and PHYSICISTS evolution of a billiard may completely change (and in different ways) in transition from mathematical to physical billiards. It a rare example when mathematicians surprise physicists. Some striking results with physicists are also already obtained. I will (again visually) explain at the end of RH why it is surprising that there could be difference between Math and Phys billiards.

Classical knot invariants and slice surfaces by Peter Feller

Series
Geometry Topology Seminar Pre-talk
Time
Wednesday, April 3, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter FellerETH Zurich

In the setup of classical knot theory---the study of embeddings of the circle into S^3---we recall two examples of classical knot invariants: the Alexander polynomial and the Seifert form.

We then introduce notions from knot-concordance theory, which is concerned with the study of slice surfaces of a knot K---surfaces embedded in the 4-ball B^4 with boundary the knot K. We will comment on the difference between the smooth and topological theory with a focus on a surprising feature of the topological theory: classical invariants govern the existence of slice surfaces of low genus in a way that is not the case in the smooth theory. This can be understood as an analogue of a dichotomy in the study of smooth and topological 4-manifolds.

On some extremal problems for polynomials

Series
Analysis Seminar
Time
Wednesday, April 3, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex StokolosGeorgia Southern

In this talk we will discuss some some extremal problems for polynomials. Applications to the problems in discrete dynamical systems as well as in the geometric complex analysis will be suggested.

Moebius bands in S^1xB^3 and the square peg problem by Peter Feller

Series
Geometry Topology Seminar
Time
Wednesday, April 3, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter FellerETH Zurich

Following an idea of Hugelmeyer, we give a knot theory reproof of a theorem of Schnirelman: Every smooth Jordan curve in the Euclidian plane has an inscribed square. We will comment on possible generalizations to more general Jordan curves.

Our main knot theory result is that the torus knot T(2n,1) in S^1xS^2 does not arise as the boundary of a locally-flat Moebius band in S^1xB^3 for square-free integers n>1. For context, we note that for n>2 and the smooth setting, this result follows from a result of Batson about the non-orientable 4-genus of certain torus knots. However, we show that Batson's result does not hold in the locally flat category: the smooth and topological non-orientable 4-genus differ for the T(9,10) torus knot in S^3.

Based on joint work with Marco Golla.

Random matrix perturbations

Series
High Dimensional Seminar
Time
Wednesday, April 3, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sean O'RourkeUniversity of Colorado Boulder

Computing the eigenvalues and eigenvectors of a large matrix is a basic task in high dimensional data analysis with many applications in computer science and statistics. In practice, however, data is often perturbed by noise. A natural question is the following: How much does a small perturbation to the matrix change the eigenvalues and eigenvectors? In this talk, I will consider the case where the perturbation is random. I will discuss perturbation results for the eigenvalues and eigenvectors as well as for the singular values and singular vectors.  This talk is based on joint work with Van Vu, Ke Wang, and Philip Matchett Wood.

Combinatorial algorithm for Optimal Design

Series
ACO Student Seminar
Time
Friday, April 5, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Vivek MadanISyE, Georgia Tech

In an optimal design problem, we are given a set of linear experiments v1,...,vn \in R^d and k >= d, and our goal is to select a set or a multiset S subseteq [n] of size k such that Phi((\sum_{i \in [n]} v_i v_i^T )^{-1}) is minimized. When Phi(M) = det(M)^{1/d}, the problem is known as the D-optimal design problem, and when Phi(M) = tr(M), it is known as the A-optimal design problem. One of the most common heuristics used in practice to solve these problems is the local search heuristic, also known as the Fedorov's exchange method. This is due to its simplicity and its empirical performance. However, despite its wide usage no theoretical bound has been proven for this algorithm. In this paper, we bridge this gap and prove approximation guarantees for the local search algorithms for D-optimal design and A-optimal design problems. We show that the local search algorithms are asymptotically optimal when $\frac{k}{d}$ is large. In addition to this, we also prove similar approximation guarantees for the greedy algorithms for D-optimal design and A-optimal design problems when k/d is large.

Averaging in a fully coupled system with singularities

Series
Math Physics Seminar
Time
Friday, April 5, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alexander GrigoDepartment of Mathematics, University of Oklahoma

In this talk I will discuss a particular fast-slow system, and describe an averaging theorem. I will also explain how this particular slow-fast system arises in a certain problem of energy transport in an open system of interacting hard-spheres. The technical aspect involved in this is how to deal with singularities present and the fact that the dynamics is fully coupled.

Physical Versus Mathematical Billiards: From Regular Dynamics to Chaos and Back

Series
Math Physics Seminar
Time
Monday, April 8, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
L.A.BunimovichSchool of Mathematics, Georgia Tech

Unusual time.

In standard (mathematical) billiards a point particle moves uniformly in a billiard table with elastic reflections off the boundary. We show that in transition from mathematical billiards to physical billiards, where a finite size hard sphere moves in the same billiard table, virtually anything may happen. Namely a non-chaotic billiard may become chaotic and vice versa. Moreover, both these transitions may occur softly, i.e. for any (arbitrarily small) positive value of the radius of a physical particle, as well as by a ”hard” transition when radius of the physical particle must exceed some critical strictly positive value. Such transitions may change a phase portrait of a mathematical billiard locally as well as completely (globally). These results are somewhat unexpected because for all standard examples of billiards their dynamics remains absolutely the same after transition from a point particle to a finite size (”physical”) particle. Moreover we show that a character of dynamics may change several times when the size of the particle is increasing. This approach already demonstrated a sensational result that quantum system could be more chaotic than its classical counterpart.

A topological mechanism for diffusion, with application to the elliptic restricted three body problem

Series
CDSNS Colloquium
Time
Monday, April 8, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
M. CapinskiJagiellonian University/Florida Atlantic University
We present a topological mechanism of diffusion in a priori chaotic systems. The method leads to a proof of diffusion for an explicit range of perturbation parameters. The assumptions of our theorem can be verified using interval arithmetic numerics, leading to computer assisted proofs. As an example of application we prove diffusion in the Neptune-Triton planar elliptic restricted three body problem. Joint work with Marian Gidea.

Text-classification methods and the mathematical theory of Principal Components

Series
Dissertation Defense
Time
Monday, April 8, 2019 - 12:10 for 1.5 hours (actually 80 minutes)
Location
Skiles 202
Speaker
Jiangning ChenGeorgia Institute of Technology

We are going talk about three topics. First of all, Principal Components Analysis (PCA) as a dimension reduction technique. We investigate how useful it is for real life problems. The problem is that, often times the spectrum of the covariance matrix is wrongly estimated due to the ratio between sample space dimension over feature space dimension not being large enough. We show how to reconstruct the spectrum of the ground truth covariance matrix, given the spectrum of the estimated covariance for multivariate normal vectors. We then present an algorithm for reconstruction the spectrum in the case of sparse matrices related to text classification. 

In the second part, we concentrate on schemes of PCA estimators. Consider the problem of finding the least eigenvalue and eigenvector of ground truth covariance matrix, a famous classical estimator are due to Krasulina. We state the convergence proof of Krasulina for the least eigenvalue and corresponding eigenvector, and then find their convergence rate.

In the last part, we consider the application problem, text classification, in the supervised view with traditional Naive-Bayes method. We find out an updated Naive-Bayes method with a new loss function, which loses the unbiased property of traditional Naive-Bayes method, but obtains a smaller variance of the estimator. 

Committee:  Heinrich Matzinger (Advisor); Karim Lounici (Advisor); Ionel Popescu (school of math); Federico Bonetto (school of math); Xiaoming Huo (school of ISYE);

Seifert fibered manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, April 8, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tye LidmanNCSU

In this talk, we will study Seifert fibered three-manifolds. While simple to define, they comprise 6 of the 8 Thurston geometries, and are an important testing ground for many questions and invariants. We will present several constructions/definitions of these manifolds and learn how to work with them explicitly.

Limits of split rank two bundles on P^n

Series
Algebra Seminar
Time
Monday, April 8, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mengyuan ZhangUniversity of California, Berkeley

In this talk we discuss the following problem due to Peskine and Kollar: Let E be a flat family of rank two bundles on P^n parametrized by a smooth variety T. If E_t is isomorphic to O(a)+O(b) for general t in T, does it mean E_0 is isomorphic to O(a)+O(b) for a special point 0 in T? We construct counter-examples in over P^1 and P^2, and discuss the problem in P^3 and higher P^n.

Interface of statistics and computing

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 8, 2019 - 13:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Xiaoming HuoGT ISyE

 Inference (aka predictive modeling) is in the core of many data science problems. Traditional approaches could be either statistically or computationally efficient, however not necessarily both. The existing principles in deriving these models - such as the maximal likelihood estimation principle - may have been developed decades ago, and do not take into account the new aspects of the data, such as their large volume, variety, velocity and veracity. On the other hand, many existing empirical algorithms are doing extremely well in a wide spectrum of applications, such as the deep learning framework; however they do not have the theoretical guarantee like these classical methods. We aim to develop new algorithms that are both computationally efficient and statistically optimal. Such a work is fundamental in nature, however will have significant impacts in all data science problems that one may encounter in the society. Following the aforementioned spirit, I will describe a set of my past and current projects including L1-based relaxation, fast nonlinear correlation, optimality of detectability, and nonconvex regularization. All of them integrates statistical and computational considerations to develop data analysis tools.

 

Heegaard Floer homology and non-zero degree maps

Series
Geometry Topology Seminar
Time
Monday, April 8, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tye LidmanNCSU

We will use Heegaard Floer homology to analyze maps between a certain family of three-manifolds akin to the Gromov norm/hyperbolic volume.  Along the way, we will study the Heegaard Floer homology of splices.  This is joint work with Cagri Karakurt and Eamonn Tweedy.

Periodic and quasi-periodic attractors of the spin-orbit dynamics of Mercury

Series
Math Physics Seminar
Time
Tuesday, April 9, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guido GentileUniversita&#039; di Roma 3

Unusual time.

Mercury is entrapped in a 3:2 resonance: it rotates on its axis three times for every two revolutions it makes around the Sun. It is generally accepted that this is due to the large value of Mercury's eccentricity. However, the mathematical model commonly used to study the problem -- sometimes called the spin-orbit model -- proved not to be entirely convincing, because of the expression used for the tidal torque. Only recently, a different model for the tidal torque has been proposed, with the advantage of both being more realistic and providing a higher probability of capture into the 3:2 resonance with respect to the previous models. On the other hand, a drawback of the model is that the function describing the tidal torque is not smooth and appears as a superposition of peaks, so that both analytical and numerical computations turn out to be rather delicate. We shall present numerical and analytical results about the nature of the librations of Mercury's spin in the 3:2 resonance, as predicted by the realistic model. In particular we shall provide evidence that the librations are quasi-periodic in time, so that the very concept of resonance should be revisited. The analytical results are mainly based on perturbation theory and leave several open problems, that we shall discuss.

Legendrian Large Cables

Series
Dissertation Defense
Time
Tuesday, April 9, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew McCulloughGeorgia Institute of Technology

We define the notion of a knot type having Legendrian large cables and
show that having this property implies that the knot type is not uniformly thick.
Moreover, there are solid tori in this knot type that do not thicken to a solid torus
with integer sloped boundary torus, and that exhibit new phenomena; specifically,
they have virtually overtwisted contact structures. We then show that there exists
an infinite family of ribbon knots that have Legendrian large cables. These knots fail
to be uniformly thick in several ways not previously seen. We also give a general
construction of ribbon knots, and show when they give similar such examples.

On the motion of a rigid body with a cavity filled with a viscous liquid

Series
PDE Seminar
Time
Tuesday, April 9, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Gieri SimonettVanderbilt University
I will consider the motion of a rigid body with an interior cavity that is completely filled with a viscous fluid. The equilibria of the system will be characterized and their stability properties are analyzed. It will be shown that the fluid exerts a stabilizing effect, driving the system towards a state where it is moving as a rigid body with constant angular velocity. In addition, I will characterize the critical spaces for the governing evolution equation, and I will show how parabolic regularization in time-weighted spaces affords great flexibility in establishing regularity and stability properties for the system. The approach is based on the theory of Lp-Lq maximal regularity. (Joint work with G. Mazzone and J. Prüss).

Energy on Spheres and Discreteness of Minimizing Measures

Series
Analysis Seminar
Time
Wednesday, April 10, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josiah ParkGeorgia Tech

When equiangular tight frames (ETF's), a type of structured optimal packing of lines, exist and are of size $|\Phi|=N$, $\Phi\subset\mathbb{F}^d$ (where $\mathbb{F}=\mathbb{R}$, $\mathbb{C}$, or $\mathbb{H}$), for $p > 2$ the so-called $p$-frame energy $E_p(\Phi)=\sum\limits_{i\neq j} |\langle \varphi_{i}, \varphi_{j} \rangle|^p$ achieves its minimum value on an ETF over all sized $N$ collections of unit vectors. These energies have potential functions which are not positive definite when $p$ is not even. For these cases the apparent complexity of the problem of describing minimizers of these energies presents itself. While there are several open questions about the structure of these sets for fixed $N$ and fixed $p$, we focus on another question:

What structural properties are expressed by minimizing probability measures for the quantity $I_{p}(\mu)=\int\limits_{\mathbb{S}_{\mathbb{F}}^{d-1}}\int\limits_{\mathbb{S}_{\mathbb{F}}^{d-1}} |\langle x, y \rangle|^p d\mu(x) d\mu(y)$?
We collect a number of surprising observations. Whenever a tight spherical or projective $t$-design exists for the sphere $\mathbb{S}_{\mathbb{F}}^d$, equally distributing mass over it gives a minimizer of the quantity $I_{p}$ for a range of $p$ between consecutive even integers associated with the strength $t$. We show existence of discrete minimizers for several related potential functions, along with conditions which guarantee emptiness of the interior of the support of minimizers for these energies. 
This talk is based on joint work with D. Bilyk, A. Glazyrin, R. Matzke, and O. Vlasiuk.

Definition of Casson Invariant

Series
Geometry Topology Student Seminar
Time
Wednesday, April 10, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hongyi ZhouGeorgia Institute of Technology

Casson invariant is defined for the class of oriented integral homology 3-spheres. It satisfies certain properties, and reduce to Rohlin invariant after mod 2. We will define Casson invariant as half of the algebraic intersection number of irreducible representation spaces (space consists of representations of fundamental group to SU(2)), and then prove this definition satisfies the expected properties.

Optimal estimation of smooth functionals of high-dimensional parameters

Series
High Dimensional Seminar
Time
Wednesday, April 10, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vladimir KoltchinskiiGeorgia Tech

We discuss a general approach to a problem of estimation of a smooth function $f(\theta)$ of a high-dimensional parameter $\theta$<br />
of statistical models. In particular, in the case of $n$ i.i.d. Gaussian observations $X_1,\doot, X_n$ with mean $\mu$ and covariance <br />
matrix $\Sigma,$ the unknown parameter is $\theta = (\mu, \Sigma)$ and our approach yields an estimator of $f(\theta)$ <br />
for a function $f$ of smoothness $s>0$ with mean squared error of the order $(\frac{1}{n} \vee (\frac{d}{n})^s) \wedge 1$ <br />
(provided that the Euclidean norm of $\mu$ and operator norms of $\Sigma,\Sigma^{-1}$ are uniformly bounded),<br />
with the error rate being minimax optimal up to a log factor (joint result with Mayya Zhilova). The construction of optimal estimators <br />
crucially relies on a new bias reduction method in high-dimensional problems<br />
and the bounds on the mean squared error are based on controlling finite differences of smooth functions along certain Markov chains<br />
in high-dimensional parameter spaces as well as on concentration inequalities.

Fractional coloring with local demands

Series
Graph Theory Seminar
Time
Thursday, April 11, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tom KellyUniversity of Waterloo

In a fractional coloring, vertices of a graph are assigned subsets of the [0, 1]-interval such that adjacent vertices receive disjoint subsets. The fractional chromatic number of a graph is at most k if it admits a fractional coloring in which the amount of "color" assigned to each vertex is at least 1/k. We investigate fractional colorings where vertices "demand" different amounts of color, determined by local parameters such as the degree of a vertex. Many well-known results concerning the fractional chromatic number and independence number have natural generalizations in this new paradigm. We discuss several such results as well as open problems. In particular, we will sketch a proof of a "local demands" version of Brooks' Theorem that considerably generalizes the Caro-Wei Theorem and implies new bounds on the independence number. Joint work with Luke Postle.

Random Neural Networks with applications to Image Recovery

Series
Stochastics Seminar
Time
Thursday, April 11, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Paul HandNortheastern University
Neural networks have led to new and state of the art approaches for image recovery. They provide a contrast to standard image processing methods based on the ideas of sparsity and wavelets. In this talk, we will study two different random neural networks. One acts as a model for a learned neural network that is trained to sample from the distribution of natural images. Another acts as an unlearned model which can be used to process natural images without any training data. In both cases we will use high dimensional concentration estimates to establish theory for the performance of random neural networks in imaging problems.

Milnor K-Theory

Series
Student Algebraic Geometry Seminar
Time
Friday, April 12, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stephen McKeanGeorgia Tech

Milnor K-theory is a field invariant that originated as an attempt to study algebraic K-theory. Instead, Milnor K-theory has proved to have many other applications, including Galois cohomology computations, Voevodsky's proof of the Bloch-Kato conjecture, and Kato's higher class field theory. In this talk, we will go over the basic definitions and theorems of Milnor K-theory. We will also discuss some of these applications.

Completely log-concave polynomials and matroids

Series
ACO Colloquium
Time
Friday, April 12, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Cynthia VinzantNorth Carolina State University, Raleigh, NC

Stability is a multivariate generalization for real-rootedness in univariate polynomials. Within the past ten years, the theory of stable polynomials has contributed to breakthroughs in combinatorics, convex optimization, and operator theory. I will introduce a generalization of stability, called complete log-concavity, that satisfies many of the same desirable properties. These polynomials were inspired by work of Adiprasito, Huh, and Katz on combinatorial Hodge theory, but can be defined and understood in elementary terms. The structure of these polynomials is closely tied with notions of discrete convexity, including matroids, submodular functions, and generalized permutohedra. I will discuss the beautiful real and combinatorial geometry underlying these polynomials and applications to matroid theory, including a proof of Mason’s conjecture on numbers of independent sets. This is based on joint work with Nima Anari, Kuikui Liu, and Shayan Oveis Gharan.

(*Refreshments available at 2:30pm before the colloquium.*)

Aubry-Mather theory for homeomorphisms

Series
Dynamical Systems Working Seminar
Time
Friday, April 12, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 246
Speaker
Adrian P. BustamanteGeorgia Tech

In this talk we will follow the paper titled "Aubry-Mather theory for homeomorphisms", in which it is developed a variational approach to study the dynamics of a homeomorphism on a compact metric space. In particular, they are described orbits along which any Lipschitz Lyapunov function has to be constant via a non-negative Lipschitz semidistance. This is work of Albert Fathi and Pierre Pageault.

Stability and bifurcation analysis of the period-T motion of a vibroimpacting energy generator

Series
CDSNS Colloquium
Time
Monday, April 15, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
L. SerdukovaSchool of Mathematics, Georgia Institute of Technology

Stability and bifurcation conditions for a vibroimpact motion in an inclined energy harvester with T-periodic forcing are determined analytically and numerically. This investigation provides a better understanding of impact velocity and its influence on energy harvesting efficiency and can be used to optimally design the device. The numerical and analytical results of periodic motions are in excellent agreement. The stability conditions are developed in non-dimensional parameter space through two basic nonlinear maps based on switching manifolds that correspond to impacts with the top and bottom membranes of the energy harvesting device. The range for stable simple T-periodic behavior is reduced with increasing angle of incline β, since the influence of gravity increases the asymmetry of dynamics following impacts at the bottom and top. These asymmetric T-periodic solutions lose stability to period doubling solutions for β ≥ 0, which appear through increased asymmetry. The period doubling, symmetric and asymmetric periodic motion are illustrated by bifurcation diagrams, phase portraits and velocity time series.

High-dimensional knots, and rho-invariants by Patrick Orson

Series
Geometry Topology Seminar Pre-talk
Time
Monday, April 15, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patrick OrsonBoston College

I will give a brief survey of concordance in high-dimensional knot theory and how slice results have classically been obtained in this setting with the aid of surgery theory. Time permitting, I will then discuss an example of how some non-abelian slice obstructions come into the picture for 1-knots, as intuition for the seminar talk about L^2 invariants.

Prime tropical ideals

Series
Algebra Seminar
Time
Monday, April 15, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kalina MinchevaYale University

Tropical geometry provides a new set of purely combinatorial tools, which has been used to approach classical problems. In tropical geometry most algebraic computations are done on the classical side - using the algebra of the original variety. The theory developed so far has explored the geometric aspect of tropical varieties as opposed to the underlying (semiring) algebra and there are still many commutative algebra tools and notions without a tropical analogue. In the recent years, there has been a lot of effort dedicated to developing the necessary tools for commutative algebra using different frameworks, among which prime congruences, tropical ideals, tropical schemes. These approaches allows for the exploration of the  properties of tropicalized spaces without tying them up to the original varieties and working with geometric structures inherently defined in characteristic one (that is, additively idempotent) semifields. In this talk we explore the relationship between tropical ideals and congruences to conclude that the variety of a prime (tropical) ideal is either empty or consists of a single point. This is joint work with D. Joó.

Solving Inverse Problems on Networks: Graph Cuts, Optimization Landscape, Synchronization

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 15, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Shuyang LingNew York University
Information retrieval from graphs plays an increasingly important role in data science and machine learning. This talk focuses on two such examples. The first one concerns the graph cuts problem: how to find the optimal k-way graph cuts given an adjacency matrix. We present a convex relaxation of ratio cut and normalized cut, which gives rise to a rigorous theoretical analysis of graph cuts. We derive deterministic bounds of finding the optimal graph cuts via a spectral proximity condition which naturally depends on the intra-cluster and inter-cluster connectivity. Moreover, our theory provides theoretic guarantees for spectral clustering and community detection under stochastic block model. The second example is about the landscape of a nonconvex cost function arising from group synchronization and matrix completion. This function also appears as the energy function of coupled oscillators on networks. We study how the landscape of this function is related to the underlying network topologies. We prove that the optimization landscape has no spurious local minima if the underlying network is a deterministic dense graph or an Erdos-Renyi random graph. The results find applications in signal processing and dynamical systems on networks.

Doubly slice knots and L^2 signatures by Patrick Orson

Series
Geometry Topology Seminar
Time
Monday, April 15, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patrick OrsonBoston College

The question of which high-dimensional knots are slice was entirely solved by Kervaire and Levine. Compared to this, the question of which knots are doubly slice in high-dimensions is still a largely open problem. Ruberman proved that in every dimension, some version of the Casson-Gordon invariants can be applied to obtain algebraically doubly slice knots that are not doubly slice. I will show how to use L^2 signatures to recover the result of Ruberman for (4k-3)-dimensional knots, and discuss how the derived series of the knot group might be used to organise the high-dimensional doubly slice problem.

Projective geometry of Wachspress coordinates

Series
Algebra Seminar
Time
Tuesday, April 16, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kathlén KohnICERM and University of Oslo
Wachspress defined barycentric coordinates on polygons in 1975. Warren generalized his construction to higher dimensional polytopes in 1996. In contrast to the classical case of simplices, barycentric coordinates on other polytopes are not unique. So the coordinates defined by Warren are now commonly known as Wachspress coordinates. They are used in a variety of applications, such as geometric modeling.
We connect the constructions by Warren and Wachspress by proving the conjecture that there is a unique polynomial of minimal degree which vanishes on the non-faces of a simple polytope. This is the adjoint polynomial introduced by Warren. Our formulation is the natural generalization of Wachspress' original idea.
The algebraic geometry of the map defined by the Wachspress coordinates was studied in the case of polygons by Irving and Schenk in 2014. We extend their results to higher dimensional polytopes. In particular, we show that the image of this Wachspress map is the projection from the image of the adjoint. For three-dimensional polytopes, we show that their adjoints are adjoints of K3- or elliptic surfaces. This talk is based on joint works with Kristian Ranestad, Boris Shapiro and Bernd Sturmfels.

Analysis on Keller-Segel Models in Chemotaxis.

Series
PDE Seminar
Time
Tuesday, April 16, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Li ChenUniversity of Mannheim

I this talk I will summerize some of our contributions in the analysis of parabolic elliptic Keller-Segel system, a typical model in chemotaxis. For the case of linear diffusion, after introducing the critical mass in two dimension, I will show our result for blow-up conditions for higher dimension. The second part of the talk is concentrated in the critical exponent for Keller-Segel system with porus media type diffusion. In the end, motivated from the result on nonlocal Fisher-KPP equation, we show that the nonlocal reaction will also help in preventing the blow-up of the solutions.  

Discrete Optimal Transport With Applications in Path Planning and Data Clustering

Series
Dissertation Defense
Time
Wednesday, April 17, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Haoyan ZhaiGeorgia Tech

Optimal transport is a thoroughly studied field in mathematics and introduces the concept of Wasserstein distance, which has been widely used in various applications in computational mathematics, machine learning as well as many areas in engineering. Meanwhile, control theory and path planning is an active branch in mathematics and robotics, focusing on algorithms that calculates feasible or optimal paths for robotic systems. In this defense, we use the properties of the gradient flows in Wasserstein metric to design algorithms to handle different types of path planning and control problems as well as the K-means problems defined on graphs.

Swindles in Mathematics

Series
Geometry Topology Student Seminar
Time
Wednesday, April 17, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech

We will see some instances of swindles in mathematics, primarily focusing on some in geometric topology due to Barry Mazur.

On maximal perimeters of convex sets with respect to measures

Series
High Dimensional Seminar
Time
Wednesday, April 17, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Galyna LivshytsGeorgia Tech

We discuss the asymptotic value of the maximal perimeter of a convex set in an n-dimensional space with respect to certain classes of measures. Firstly, we derive a lower bound for this quantity for a large class of probability distributions; the lower bound depends on the moments only. This lower bound is sharp in the case of the Gaussian measure (as was shown by Nazarov in 2001), and, more generally, in the case of rotation invariant log-concave measures (as was shown by myself in 2014). We discuss another class of measures for which this bound is sharp. For isotropic log-concave measures, the value of the lower bound is at least n^{1/8}.

In addition, we show a uniform upper bound of Cn||f||^{1/n}_{\infty} for all log-concave measures in a special position, which is attained for the uniform distribution on the cube. We further estimate the maximal perimeter of isotropic log-concave measures by n^2. 

Caterpillars in Erods-Hajnal

Series
Graph Theory Working Seminar
Time
Wednesday, April 17, 2019 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michail SarantisGeorgia Tech

The well known Erdos-Hajnal Conjecture states that every graph has the Erdos-Hajnal (EH) property. That is, for every $H$, there exists a $c=c(H)>0$ such that every graph $G$ with no induced copy of $H$ has the property $hom(G):=max\{\alpha(G),\omega(G)\}\geq |V(G)|^{c}$. Let $H,J$ be subdivisions of caterpillar graphs. Liebenau, Pilipczuk, Seymour and Spirkl proved that the EH property holds if we forbid both $H$ and $\overline{J}.$ We will discuss the proof of this result.

Independent set permutations, and matching permutations

Series
Graph Theory Seminar
Time
Thursday, April 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David GalvinUniversity of Notre Dam
To any finite real sequence, we can associate a permutation $\pi$, via: $\pi(k)$ is the index of the $k$th smallest element of the sequence. This association was introduced in a 1987 paper of Alavi, Malde, Schwenk and Erd\H{o}s, where they used it to study the possible patterns of rises and falls that can occur in the matching sequence of a graph (the sequence whose $k$th term is the number of matchings of size $k$), and in the independent set sequence. The main result of their paper was that {\em every} permutation can arise as the ``independent set permutation'' of some graph. They left open the following extremal question: for each $n$, what is the smallest order $m$ such that every permutation of $[n]$ can be realized as the independent set permutation of some graph of order at most $m$? We answer this question. We also improve Alavi et al.'s upper bound on the number of permutations that can be realized as the matching permutation of some graph. There are still many open questions in this area. This is joint work with T. Ball, K. Hyry and K. Weingartner, all at Notre Dame.

TBA by N Demni

Series
Stochastics Seminar
Time
Thursday, April 18, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nizar DemniUniversity of Marseille

Nonlinear Mechanics of Accretion

Series
Geometry Topology Working Seminar
Time
Friday, April 19, 2019 - 14:00 for 2 hours
Location
Skiles 006
Speaker
Arash Yavari and Fabio Sozio, School of Civil and Environmental EngineeringGeorgia Tech
We formulate a geometric nonlinear theory of the mechanics of accretion. In this theory the material manifold of an accreting body is represented by a time-dependent Riemannian manifold with a time-independent metric that at each point depends on the state of deformation at that point at its time of attachment to the body, and on the way the new material isadded to the body. We study the incompatibilities induced by accretion through the analysis of the material metric and its curvature in relation to the foliated structure of the accreted body. Balance laws are discussed and the initial-boundary value problem of accretion is formulated. The particular cases where the growth surface is either fixed or traction-free are studied and some analytical results are provided. We numerically solve several accretion problems and calculate the residual stresses in nonlinear elastic bodies induced from accretion.

Exponential decay of quantum conditional information in thermal states of 1D short-ranged gapped Hamiltonians.

Series
Math Physics Seminar
Time
Friday, April 19, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pavel SvetlichnyySchool of Physics, GaTeach

I will talk about a conjecture that in Gibbs states of one-dimensional spin chains with short-ranged gapped Hamiltonians the quantum conditional mutual information (QCMI) between the parts of the chain decays exponentially with the length of separation between said parts. The smallness of QCMI enables efficient representation of these states as tensor networks, which allows their efficient construction and fast computation of global quantities, such as entropy. I will present the known partial results on the way of proving of the conjecture and discuss the probable approaches to the proof and the obstacles that are encountered.

Polynomial Decompositions in Machine Learning

Series
Algebra Seminar
Time
Monday, April 22, 2019 - 12:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joe KileelPrinceton University

This talk will be about polynomial decompositions that are relevant in machine learning.  I will start with the well-known low-rank symmetric tensor decomposition, and present a simple new algorithm with local convergence guarantees, which seems to handily outperform the state-of-the-art in experiments.  Next I will consider a particular generalization of symmetric tensor decomposition, and apply this to estimate subspace arrangements from very many, very noisy samples (a regime in which current subspace clustering algorithms break down).  Finally I will switch gears and discuss representability of polynomials by deep neural networks with polynomial activations.  The various polynomial decompositions in this talk motivate questions in commutative algebra, computational algebraic geometry and optimization.  The first part of this talk is joint with Emmanuel Abbe, Tamir Bendory, Joao Pereira and Amit Singer, while the latter part is joint with Matthew Trager.

Near-Best Adaptive Approximation on Conforming Simplicial Partitions

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 22, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter BinevUniversity of South Carolina

The talk presents an extension for high dimensions of an idea from a recent result concerning near optimal adaptive finite element methods (AFEM). The usual adaptive strategy for finding conforming partitions in AFEM is ”mark → subdivide → complete”. In this strategy any element can be marked for subdivision but since the resulting partition often contains hanging nodes, additional elements have to be subdivided in the completion step to get a conforming partition. This process is very well understood for triangulations received via newest vertex bisection procedure. In particular, it is proven that the number of elements in the final partition is limited by constant times the number of marked cells. This motivated us [B., Fierro, Veeser, in preparation] to design a marking procedure that is limited only to cells of the partition whose subdivision will result in a conforming partition and therefore no completion step is necessary. We also proved that this procedure is near best in terms of both error of approximation and complexity. This result is formulated in terms of tree approximations and opens the possibility to design similar algorithms in high dimensions using sparse occupancy trees introduced in [B., Dahmen, Lamby, 2011]. The talk describes the framework of approximating high dimensional data using conforming sparse occupancy trees.

Joint GT-UGA Seminar at GT - Simply-connected, spineless 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, April 22, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Adam LevineDuke University
Given an m-dimensional manifold M that is homotopy equivalent to an n-dimensional manifold N (where n4, Cappell and Shaneson showed that if M is simply-connected or if m is odd, then it contains a spine. In contrast, I will show that there exist smooth, compact, simply-connected 4-manifolds which are homotopy equivalent to the 2-sphere but do not contain a spine (joint work with Tye Lidman). I will also discuss some related results about PL concordance of knots in homology spheres (joint with Lidman and Jen Hom).

Joint GT-UGA Seminar at GT - On the topological expressiveness of neural networks

Series
Geometry Topology Seminar
Time
Monday, April 22, 2019 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eli GrigsbyBoston College

One can regard a (trained) feedforward neural network as a particular type of function , where  is a (typically high-dimensional) Euclidean space parameterizing some data set, and the value  of the function on a data point  is the probability that the answer to a particular yes/no question is "yes." It is a classical result in the subject that a sufficiently complex neural network can approximate any function on a bounded set. Last year, J. Johnson proved that universality results of this kind depend on the architecture of the neural network (the number and dimensions of its hidden layers). His argument was novel in that it provided an explicit topological obstruction to representability of a function by a neural network, subject to certain simple constraints on its architecture. I will tell you just enough about neural networks to understand how Johnson's result follows from some very simple ideas in piecewise linear geometry. Time permitting, I will also describe some joint work in progress with K. Lindsey aimed at developing a general theory of how the architecture of a neural network constrains its topological expressiveness.

Oral Exam: On Radial Symmetry of Uniformly Rotating/ Stationary Solutions to 2D Euler Equation

Series
Other Talks
Time
Tuesday, April 23, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jaemin ParkGeorgia Institute of Technology

We study whether all stationary solutions of 2D Euler equation must be radially symmetric, if the vorticity is compactly supported or has some decay at infinity. Our main results are the following:

(1) On the one hand, we are able to show that for any non-negative smooth stationary vorticity  that is compactly supported (or has certain decay as |x|->infty), it must be radially symmetric up to a translation. 

(2) On the other hand, if we allow vorticity to change sign, then by applying bifurcation arguments to sign-changing radial patches, we are able to show that there exists a compactly-supported, sign-changing smooth stationary vorticity that is non-radial.

We have also obtained some symmetry results for uniformly-rotating solutions for 2D Euler equation, as well as stationary/rotating solutions for the SQG equation. The symmetry results are mainly obtained by calculus of variations and elliptic equation techniques. This is a joint work with Javier Gomez-Serrano, Jia Shi and Yao Yao. 

Athens-Atlanta Number Theory Seminar

Series
Athens-Atlanta Number Theory Seminar
Time
Tuesday, April 23, 2019 - 16:00 for 2.5 hours
Location
Skiles 311
Speaker
Ananth Shankar, Jordan EllenbergMIT, University of Wisconsin, Madison

First talk at 4:00 by by Ananth Shankar (MIT http://math.mit.edu/~ananths/)

Exceptional splitting of abelian surfaces over global function fields.

Let A denote a non-constant ordinary abelian surface over a global function field (of characteristic p > 2) with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. Then we prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves. If time permits, I will also talk about applications of our results to the p-adic monodromy of such abelian surfaces. This is joint work with Davesh Maulik and Yunqing Tang.

Second talk at 5:15 Jordan Ellenberg (University of Wisconsin http://www.math.wisc.edu/~ellenber/)

What is the tropical Ceresa class and what should it be?

This is a highly preliminary talk about joint work with Daniel Corey and Wanlin Li.  The Ceresa cycle is an algebraic cycle canonically attached to a curve C, which appears in an intriguing variety of contexts; its height can sometimes be interpreted as a special value, the vanishing of its cycle class is related to the Galois action on the nilpotent fundamental group, it vanishes on hyperelliptic curves, etc.  In practice it is not easy to compute, and we do not in fact know an explicit non-hyperelliptic curve whose Ceresa class vanishes.  We will discuss a definition of the Ceresa class for a tropical curve, explain how to compute it in certain simple cases, and describe progress towards understanding whether it is possible for the Ceresa class of a non-hyperelliptic tropical curve to vanish.  (The answer is:  "sort of”.)  The tropical Ceresa class sits at the interface of algebraic geometry, graph theory (because a tropical curve is more or less a metric graph), and topology: for we can also frame the tropical Ceresa class as an entity governed by the mapping class group, and in particular by the question of when a product of commuting Dehn twists can commute with a hyperelliptic involution in the quotient of the mapping class group by the Johnson kernel.

Random graph processes: results and techniques

Series
Research Horizons Seminar
Time
Wednesday, April 24, 2019 - 00:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lutz WarnkeGeorgia Tech

During the last 30 years there has been much interest in random graph processes, i.e., random graphs which grow by adding edges (or vertices) step-by-step in some random way. Part of the motivation stems from more realistic modeling, since many real world networks such as Facebook evolve over time. Further motivation stems from extremal combinatorics, where these processes lead to some of the best known bounds in Ramsey and Turan Theory (that go beyond textbook applications of the probabilistic method). I will review several random graph processes of interest, and (if time permits) illustrate one of the main proof techniques using a simple toy example.

Rank of non-negative bivariate forms.

Series
Student Algebraic Geometry Seminar
Time
Friday, April 26, 2019 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jaewoo JungGeorgia Institute of Technology

It is known that non-negative homogeneous polynomials(forms) over $\mathbb{R}$ are same as sums of squares if it is bivariate, quadratic forms, or ternary quartic by Hilbert. Once we know a form is a sum of squares, next natural question would be how many forms are needed to represent it as sums of squares. We denote the minimal number of summands in the sums of squares by rank (of the sum of squares). Ranks of some class of forms are known. For example, any bivariate forms (allowing all monomials) can be written as sum of $2$ squares.(i.e. its rank is $2$) and every nonnegative ternary quartic can be written as a sum of $3$ squares.(i.e. its rank is $3$). Our question is that "if we do not allow some monomials in a bivariate form, how its rank will be?". In the talk, we will introduce this problem in algebraic geometry flavor and provide some notions and tools to deal with.

Constructive regularization of the random matrix norm.

Series
Stochastics Seminar
Time
Sunday, April 28, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
006
Speaker
Liza RebrovaUCLA

I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.

I am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.

Approaching Moons in Chaotic Environments With Applications to Europa Lander

Series
CDSNS Colloquium
Time
Tuesday, April 30, 2019 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rodney AndersonNASA Jet Propulsion Laboratory, California Institute of Technology

The unusual day

New and proposed missions for approaching moons, and particularly icy moons, increasingly require the design of trajectories within challenging multi-body environments that stress or exceed the capabilities of the two-body design methodologies typically used over the last several decades. These current methods encounter difficulties because they often require appreciable user interaction, result in trajectories that require significant amounts of propellant, or miss potential mission-enabling options. The use of dynamical systems methods applied to three-body and multi-body models provides a pathway to obtain a fuller theoretical understanding of the problem that can then result in significant improvements to trajectory design in each of these areas. The search for approach trajectories within highly nonlinear, chaotic regimes where multi-body effects dominate becomes increasingly complex, especially when landing, orbiting, or flyby scenarios must be considered in the analysis. In the case of icy moons, approach trajectories must also be tied into the broader tour which includes flybys of other moons. The tour endgame typically includes the last several flybys, or resonances, before the final approach to the moon, and these resonances further constrain the type of approach that may be used.

In this seminar, new methods for approaching moons by traversing the chaotic regions near the Lagrange point gateways will be discussed for several examples. The emphasis will be on landing trajectories approaching Europa including a global analysis of trajectories approaching any point on the surface and analyses for specific landing scenarios across a range of different energies. The constraints on the approach from the tour within the context of the endgame strategy will be given for a variety of different moons and scenarios. Specific approaches using quasiperiodic or Lissajous orbits will be shown, and general landing and orbit insertion trajectories will be placed into context relative to the invariant manifolds of unstable periodic and quasiperiodic orbits. These methods will be discussed and applied for the specific example of the Europa Lander mission concept. The Europa Lander mission concept is particularly challenging in that it requires the redesign of the approach scenario after the spacecraft has launched to accommodate landing at a wide range of potential locations on the surface. The final location would be selected based on reconnaissance from the Europa Clipper data once Europa Lander is in route. Taken as a whole, these methods will provide avenues to find both fundamentally new approach pathways and reduce cost to enable new missions.

(Oral Exam) Mathematical Modeling and Analysis of Multidimensional Data

Series
Other Talks
Time
Tuesday, April 30, 2019 - 13:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Yuchen Roy He GT Math


Multidimensional data is ubiquitous in the application, e.g., images and videos. I will introduce some of my previous and current works related to this topic.
1) Lattice metric space and its applications. Lattice and superlattice patterns are found in material sciences, nonlinear optics and sampling designs. We propose a lattice metric space based on modular group theory and
metric geometry, which provides a visually consistent measure of dissimilarity among lattice patterns.  We apply this framework to superlattice separation and grain defect detection.
2) We briefly introduce two current projects. First, we propose new algorithms for automatic PDE modeling, which drastically improves the efficiency and the robustness against additive noise. Second, we introduce a new model for surface reconstruction from point cloud data (PCD) and provide an ADMM type fast algorithm.

 

 

 

Weak Solutions of Mean Field Game Master Equations

Series
PDE Seminar
Time
Tuesday, April 30, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
skiles 006
Speaker
Chenchen MouUCLA

 In this talk we study master equations arising from mean field game 
problems, under the crucial monotonicity conditions.
Classical solutions of such equations require very strong technical 
conditions. Moreover, unlike the master equations arising from mean 
field control problems, the mean field game master equations are 
non-local and even classical solutions typically do not satisfy the 
comparison principle, so the standard viscosity solution approach seems 
infeasible. We shall propose a notion of weak solution for such 
equations and establish its wellposedness. Our approach relies on a new 
smooth mollifier for functions of measures, which unfortunately does not 
keep the monotonicity property, and the stability result of master 
equations. The talk is based on a joint work with Jianfeng Zhang.

The Polaron Hydrogenic Atom in a Strong Magnetic Field

Series
Dissertation Defense
Time
Thursday, May 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rohan GhantaSchool of Mathematics

An electron interacting with the vibrational modes of a polar crystal is called a polaron. Polarons are the simplest Quantum Field Theory models, yet their most basic features such as the effective mass, ground-state energy and wave function cannot be evaluated explicitly. And while several successful theories have been proposed over the years to approximate the energy and effective mass of various polarons, they are built entirely on unjustified, even questionable, Ansätze for the wave function. 

In this talk I shall provide the first explicit description of the ground-state wave function of a polaron in an asymptotic regime: For the Fröhlich polaron localized in a Coulomb potential and exposed to a homogeneous magnetic field of strength $B$ it will be shown that the ground-state electron density in the direction of the magnetic field converges pointwise and in a weak sense as $B\rightarrow\infty$ to the square of a hyperbolic secant function--a sharp contrast to the Gaussian wave functions suggested in the physics literature. 

Percolation Theory: The complement of the infinite cluster & The acceptance profile of the invasion percolation

Series
Dissertation Defense
Time
Thursday, May 2, 2019 - 13:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Bounghun BockGeorgia Tech

In independent bond percolation  with parameter p, if one removes the vertices of the infinite cluster (and incident edges), for which values of p does the remaining graph contain an infinite cluster? Grimmett-Holroyd-Kozma used the triangle condition to show that for d > 18, the set of such p contains values strictly larger than the percolation threshold pc. With the work of Fitzner-van der Hofstad, this has been reduced to d > 10. We reprove this result by showing that for d > 10 and some p>pc, there are infinite paths consisting of "shielded"' vertices --- vertices all whose adjacent edges are closed --- which must be in the complement of the infinite cluster. Using numerical values of pc, this bound can be reduced to d > 7. Our methods are elementary and do not require the triangle condition.

Invasion percolation is a stochastic growth model that follows a greedy algorithm. After assigning i.i.d. uniform random variables (weights) to all edges of d-dimensional space, the growth starts at the origin. At each step, we adjoin to the current cluster the edge of minimal weight from its boundary. In '85, Chayes-Chayes-Newman studied the "acceptance profile"' of the invasion: for a given p in [0,1], it is the ratio of the expected number of invaded edges until time n with weight in [p,p+dp] to the expected number of observed edges (those in the cluster or its boundary) with weight in the same interval. They showed that in all dimensions, the acceptance profile an(p) converges to one for ppc. In this paper, we consider an(p) at the critical point p=pc in two dimensions and show that it is bounded away from zero and one as n goes to infinity.

Short time solution to the master equation of a first order mean field game

Series
Dissertation Defense
Time
Friday, May 3, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sergio MayorgaGraduate student

For a first order (deterministic) mean-field game with non-local running and initial couplings, a classical solution is constructed for the associated, so-called master equation, a partial differential equation in infinite-dimensional space with a non-local term, assuming the time horizon is sufficiently small and the coefficients are smooth enough, without convexity conditions on the Hamiltonian. 

Effects of risk-aversion and diversity of user preferences on network routing

Series
ACO Student Seminar
Time
Thursday, May 9, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
ISyE Main 228
Speaker
Evdokia Nikolova ECE, UT Austin

In network routing users often tradeoff different objectives in selecting their best route. An example is transportation networks, where due to uncertainty of travel times, drivers may tradeoff the average travel time versus the variance of a route. Or they might tradeoff time and cost, such as the cost paid in tolls.

We wish to understand the effect of two conflicting criteria in route selection, by studying the resulting traffic assignment (equilibrium) in the network. We investigate two perspectives of this topic: (1) How does the equilibrium cost of a risk-averse population compare to that of a risk-neutral population? (i.e., how much longer do we spend in traffic due to being risk-averse) (2) How does the equilibrium cost of a heterogeneous population compare to that of a comparable homogeneous user population?

We provide characterizations to both questions above.

Based on joint work with Richard Cole, Thanasis Lianeas and Nicolas Stier-Moses.

At the end I will mention current work of my research group on algorithms and mechanism design for power systems.

Biography: Evdokia Nikolova is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Texas at Austin, where she is a member of the Wireless Networking & Communications Group. Previously she was an Assistant Professor in Computer Science and Engineering at Texas A&M University. She graduated with a BA in Applied Mathematics with Economics from Harvard University, MS in Mathematics from Cambridge University, U.K. and Ph.D. in Computer Science from MIT.

Nikolova's research aims to improve the design and efficiency of complex systems (such as networks and electronic markets), by integrating stochastic, dynamic and economic analysis. Her recent work examines how human risk aversion transforms traditional computational models and solutions. One of her algorithms has been adapted in the MIT CarTel project for traffic-aware routing. She currently focuses on developing algorithms for risk mitigation in networks, with applications to transportation and energy. She is a recipient of an NSF CAREER award and a Google Faculty Research Award. Her research group has been recognized with a best student paper award and a best paper award runner-up. She currently serves on the editorial board of the journal Mathematics of Operations Research.

Translational scissors congruence

Series
Geometry Topology Seminar
Time
Monday, May 13, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Inna ZakharevichCornell

One of the classical problems in scissors congruence is
this: given two polytopes in $n$-dimensional Euclidean space, when is
it possible to decompose them into finitely many pieces which are
pairwise congruent via translations?  A complete set of invariants is
provided by the Hadwiger invariants, which measure "how much area is
pointing in each direction."  Proving that these give a complete set
of invariants is relatively straightforward, but determining the
relations between them is much more difficult.  This was done by
Dupont, in a 1982 paper. Unfortunately, this result is difficult to
describe and work with: it uses group homological techniques which
produce a highly opaque formula involving twisted coefficients and
relations in terms of uncountable sums.  In this talk we will discuss
a new perspective on Dupont's proof which, together with more
topological simplicial techniques, simplifies and clarifies the
classical results.  This talk is partially intended to be an
advertisement for simplicial techniques, and will be suitable for
graduate students and others unfamiliar with the approach.

Flag moduli spaces and Legendrian surfaces

Series
Geometry Topology Seminar
Time
Wednesday, May 15, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skile 005
Speaker
Roger CasalsUC Davis

In this talk, I will discuss progress in our understanding of Legendrian surfaces. First, I will present a new construction of Legendrian surfaces and a direct description for their moduli space of microlocal sheaves. This Legendrian invariant will connect to classical incidence problems in algebraic geometry and the study of flag varieties, which we will study in detail. There will be several examples during the talk and, in the end, I will indicate the relation of this theory to the study of framed local systems on a surface. This talk is based on my work with E. Zaslow.

Rational cobordisms and integral homology

Series
Geometry Topology Seminar
Time
Wednesday, May 29, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Paolo AcetoUniversity of Oxford

We prove that every rational homology cobordism class in the subgroup generated by lens spaces contains a unique connected sum of lens spaces whose first homology embeds in any other element in the same class. As a consequence we show that several natural maps to the rational homology cobordism group have infinite rank cokernels, and obtain a divisibility condition between the determinants of certain 2-bridge knots and other knots in the same concordance class. This is joint work with Daniele Celoria and JungHwan Park.

Introduction to KAM theory: I the basics.

Series
Dynamical Systems Working Seminar
Time
Wednesday, May 29, 2019 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Rafael de la LlaveGeorgia Institute of Technology

The KAM (Kolmogorov Arnold and Moser) theory studies
the persistence of quasi-periodic solutions under perturbations.
It started from a basic set of theorems and it has grown
into a systematic theory that settles many questions. 

The basic theorem is rather surprising since it involves delicate
regularity properties of the functions considered, rather
subtle number theoretic properties of the frequency as well
as geometric properties of the dynamical systems considered.

In these lectures, we plan to cover a complete proof of
a particularly representative theorem in KAM theory.

In the first lecture we will cover all the prerequisites
(analysis, number theory and geometry). In the second lecture
we will present a complete proof of Moser's twist map theorem
(indeed a generalization to more dimensions).

The proof also lends itself to very efficient numerical algorithms.
If there is interest and energy, we will devote a third lecture
to numerical implementations. 

Introduction to KAM theory: II Moser's twist theorem in any dimension

Series
Dynamical Systems Working Seminar
Time
Thursday, May 30, 2019 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Rafael de la LlaveGeorigia Inst. of Technology

he KAM (Kolmogorov Arnold and Moser) theory studies
the persistence of quasi-periodic solutions under perturbations.
It started from a basic set of theorems and it has grown
into a systematic theory that settles many questions. 

The basic theorem is rather surprising since it involves delicate
regularity properties of the functions considered, rather
subtle number theoretic properties of the frequency as well
as geometric properties of the dynamical systems considered.

In these lectures, we plan to cover a complete proof of
a particularly representative theorem in KAM theory.

In the first lecture we will cover all the prerequisites
(analysis, number theory and geometry). In the second lecture
we will present a complete proof of Moser's twist map theorem
(indeed a generalization to more dimensions).

The proof also lends itself to very efficient numerical algorithms.
If there is interest and energy, we will devote a third lecture
to numerical implementations. 

Factorization homology: sigma-models as state-sum TQFTs.

Series
Geometry Topology Seminar
Time
Friday, May 31, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
David AyalaMontana State University
Roughly, factorization homology pairs an n-category and an n-manifold to produce a vector space.  Factorization homology is to state-sum TQFTs as singular homology is to simplicial homology: the former is manifestly well-defined (ie, independent of auxiliary choices), continuous (ie, beholds a continuous action of diffeomorphisms), and functorial; the latter is easier to compute.  
 
Examples of n-categories to input into this pairing arise, through deformation theory, from perturbative sigma-models.  For such n-categories, this state sum expression agrees with the observables of the sigma-model — this is a form of Poincare’ duality, which yields some surprising dualities among TQFTs.  A host of familiar TQFTs are instances of factorization homology; many others are speculatively so.  
 
The first part of this talk will tour through some essential definitions in what’s described above.  The second part of the talk will focus on familiar manifold invariants, such as the Jones polynomial, as instances of factorization homology, highlighting the Poincare’/Koszul duality result.  The last part of the talk will speculate on more such instances.  

Topics in Dynamical Systems

Series
Dissertation Defense
Time
Wednesday, June 5, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Longmei ShuGeorgia Inst. of Technology

Isospectral reductions is a network/graph reduction that preserves the
eigenvalues and the eigenvectors of the adjacency matrix. We analyze the
conditions under which the generalized eigenvectors would be preserved and
simplify the proof of the preservation of eigenvectors. Isospectral reductions
are associative and form a dynamical system on the set of all matrices/graphs.
We study the spectral equivalence relation defined by specific characteristics
of nodes under isospectral reductions and show some examples of the attractors.
Cooperation among antigens, cross-immunoreactivity (CR) has been observed in
various diseases. The complex viral population dynamics couldn't be explained
by traditional math models. A new math model was constructed recently with
promising numerical simulations. In particular, the numerical results recreated
local immunodeficiency (LI), the phenomenon where some viruses sacrifice
themselves while others are not attacked by the immune system. Here we analyze
small CR networks to find the minimal network with a stable LI. We also
demonstrate that you can build larger CR networks with stable LI using this
minimal network as a building block.

On numerical integrators for state-dependent delay equations

Series
Dynamical Systems Working Seminar
Time
Friday, June 21, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 317
Speaker
Joan GimenoUniversitat de Barcelona (BGSMath)
Abstract: Many real-life phenomena in science can be modeled by an Initial Value Problem (IVP) for ODE's. To make the model more consistent with real phenomenon, it sometimes needs to include the dependence on past values of the state. Such models are given by retarded functional differential equations. When the past values depend on the state, the IVP is not always defined. Several examples illustrating the problems and methods to integrate IVP of these kind of differential equations are going to be explained in this talk.

On the Synchronization Myth for Lateral Pedestrian-Instability of Suspension Bridges

Series
Applied and Computational Mathematics Seminar
Time
Tuesday, June 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Igor BelykhGeorgia State

The pedestrian-induced lateral oscillation of London's Millennium bridge on the day it opened in 2000 has become a much cited paradigm of an instability caused by phase synchronization of coupled oscillators. However, a closer examination of subsequent theoretical studies and experimental observations have brought this interpretation into question. 

To elucidate the true cause of instability, we study a model in which each pedestrian is represented by a simplified biomechanically-inspired two-legged inverted pendulum. The key finding is that synchronization between individual pedestrians is not a necessary ingredient of instability onset. Instead, the side-to-side pedestrian motion should on average lag that of the bridge oscillation by a fraction of a cycle. Using a multi-scale asymptotic analysis, we derive a mathematically rigorous general criterion for bridge instability based on the notion of effective negative damping. This criterion suggests that the initiation of wobbling is not accompanied by crowd synchrony and crowd synchrony is a consequence but not the cause of bridge instability.

Lattice points, zonotopes, and oriented matroids

Series
Dissertation Defense
Time
Wednesday, July 3, 2019 - 11:00 for
Location
Skiles 006
Speaker
Marcel CelayaGeorgia Tech

The first half of this dissertation concerns the following problem: Given a lattice in $\mathbf{R}^d$ which refines the integer lattice $\mathbf{Z}^d$, what can be said about the distribution of the lattice points inside of the half-open unit cube $[0,1)^d$? This question is of interest in discrete geometry, especially integral polytopes and Ehrhart theory. We observe a combinatorial description of the linear span of these points, and give a formula for the dimension of this span. The proofs of these results use methods from classical multiplicative number theory.

In the second half of the dissertation, we investigate oriented matroids from the point of view of tropical geometry. Given an oriented matroid, we describe, in detail, a polyhedral complex which plays the role of the Bergman complex for ordinary matroids. We show how this complex can be used to give a new proof of the celebrated Bohne-Dress theorem on tilings of zonotopes by zonotopes with an approach which relies on a novel interpretation of the chirotope of an oriented matroid.

On the Independent Spanning Tree Conjectures and Related Problems

Series
Dissertation Defense
Time
Wednesday, July 10, 2019 - 10:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Alexander HoyerGeorgia Institute of Technology

We say that trees with common root are (edge-)independent if, for any vertex in their intersection, the paths to the root induced by each tree are internally (edge-)disjoint. The relationship between graph (edge-)connectivity and the existence of (edge-)independent spanning trees is explored. The (Edge-)Independent Spanning Tree Conjecture states that every k-(edge-)connected graph has k-(edge-)independent spanning trees with arbitrary root.

We prove the case k=4 of the Edge-Independent Spanning Tree Conjecture using a graph decomposition similar to an ear decomposition, and give polynomial-time algorithms to construct the decomposition and the trees. We provide alternate geometric proofs for the cases k=3 of both the Independent Spanning Tree Conjecture and Edge-Independent Spanning Tree Conjecture by embedding the vertices or edges in a 2-simplex, and conjecture higher-dimension generalizations. We provide a partial result towards a generalization of the Independent Spanning Tree Conjecture, in which local connectivity between the root and a vertex set S implies the existence of trees whose independence properties hold only in S. Finally, we prove and generalize a theorem of Györi and Lovász on partitioning a k-connected graph, and give polynomial-time algorithms for the cases k=2,3,4 using the graph decompositions used to prove the corresponding cases of the Independent Spanning Tree Conjecture.

Quantum torus methods for Kauffman bracket skein modules

Series
Dissertation Defense
Time
Friday, July 26, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 114
Speaker
Jonathan PaprockiGeorgia Institute of Technology

We investigate aspects of Kauffman bracket skein algebras of surfaces and modules of 3-manifolds using quantum torus methods. These methods come in two flavors: embedding the skein algebra into a quantum torus related to quantum Teichmuller space, or filtering the algebra and obtaining an associated graded algebra that is a monomial subalgebra of a quantum torus. We utilize the former method to generalize the Chebyshev homomorphism of Bonahon and Wong between skein algebras of surfaces to a Chebyshev-Frobenius homomorphism between skein modules of marked 3-manifolds, in the course of which we define a surgery theory, and whose image we show is either transparent or (skew)-transparent. The latter method is used to show that skein algebras of surfaces are maximal orders, which implies a refined unicity theorem, shows that SL_2C-character varieties are normal, and suggests a conjecture on how this result may be utilized for topological quantum compiling.

Compactness and singularity related to harmonic maps

Series
PDE Seminar
Time
Friday, July 26, 2019 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jiayu LiUniversity of Science and Technology of China

In this talk we will review compactness results and singularity theorems related to harmonic maps. We first talk about maps from Riemann surfaces with tension fields bounded in a local Hardy space, then talk about stationary harmonic maps from higher dimensional manifolds, finally talk about heat flow of harmonic maps.

Topics On the Length of the Longest Common Subsequences With Blocks In Binary Random Words

Series
Dissertation Defense
Time
Thursday, August 8, 2019 - 13:00 for
Location
Skiles 246
Speaker
Yuze ZhangGeorgia Institute of Technology

The study of LIn, the length of the longest increasing subsequences, and of LCIn, the length of the longest common and increasing subsequences in random words is classical in computer science and bioinformatics, and has been well explored over the last few decades. This dissertation studies a generalization of LCIn for two binary random words, namely, it analyzes the asymptotic behavior of LCbBn, the length of the longest common subsequences containing a fixed number, b, of blocks. We first prove that after proper centerings and scalings, LCbBn, for two sequences of i.i.d. Bernoulli random variables with possibly two different parameters, converges in law towards limits we identify. This dissertation also includes an alternative approach to the one-sequence LbBn problem, and Monte-Carlo simulations on the asymptotics of LCbBn and on the growth order of the limiting functional, as well as several extensions of the LCbBn problem to the Markov context and some connection with percolation theory.

Group Actions and Cogroup Coactions in Simplicial Sheaves

Series
Geometry Topology Seminar
Time
Tuesday, August 13, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skile 114
Speaker
Jonathan BeardsleyGeorgia Tech

Please note different day and room.

In this talk, I will describe joint work with Maximilien Péroux on understanding Koszul duality in ∞-topoi. An ∞-topos is a particularly well behaved higher category that behaves like the category of compactly generated spaces. Particularly interesting examples of ∞-topoi are categories of simplicial sheaves on Grothendieck topologies. The main theorem of this work is that given a group object G of an ∞-topos, there is an equivalence of categories between the category of G-modules in that topos and the category of BG-comodules, where BG is the classifying object for G-torsors. In particular, given any pointed space X, the space of loops on X, denoted ΩX, can be lifted to a group object of any ∞-topos, so if X is in addition a connected space, there is an equivalence between objects of any ∞-topos with an ΩX-action, and objects with an X-coaction (where X is a coalgebra via the usual diagonal map). This is a generalization of the classical equivalence between G-spaces and spaces over BG for G a topological group.

Stochastic-Statistical Modeling of Criminal Behavior

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 19, 2019 - 13:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chuntian WangThe University of Alabama

Residential crime is one of the toughest issues in modern society. A quantitative, informative, and applicable model of criminal behavior is needed to assist law enforcement. We have made progress to the pioneering statistical agent-based model of residential burglary (Short et al., Math. Models Methods Appl., 2008) in two ways. (1) In one space dimension, we assume that the movement patterns of the criminals involve truncated Lévy distributions for the jump length, other than classical random walks (Short et al., Math. Models Methods Appl., 2008) or Lévy flights without truncation (Chaturapruek et al., SIAM J. Appl. Math, 2013). This is the first time that truncated Lévy flights have been applied in crime modeling. Furthermore (2), in two space dimensions, we used the Poisson clocks to govern the time steps of the evolution of the model, rather than a discrete time Markov chain with deterministic time increments used in the previous works. Poisson clocks are particularly suitable to model the times at which arrivals enter a system. Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.

The Mathematics of Futurama

Series
Undergraduate Seminar
Time
Monday, August 19, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Michael LaceyGeorgia Tech

Great News Everyone! The cartoon series Futurama is packed with science jokes. Adopting my Professor Farnsworth Alterego, I will explain some of these mathematical jokes with stills and clips from the series.

Organizational meeting

Series
Mathematical Biology Seminar
Time
Wednesday, August 21, 2019 - 11:00 for 30 minutes
Location
Skiles 006
Speaker
Christine HeitschGeorgia Tech

A brief meeting to discuss the plan for the semester, followed by an informal discussion over lunch (most likely at Ferst Place).

A Generalization to DAGs for Hierarchical Exchangeability

Series
Stochastics Seminar
Time
Thursday, August 22, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Paul JungKAIST

A random array indexed by the paths of an infinitely-branching rooted tree of finite depth is hierarchically exchangeable if its joint distribution is invariant under rearrangements that preserve the tree structure underlying the index set. Austin and Panchenko (2014) prove that such arrays have de Finetti-type representations, and moreover, that an array indexed by a finite collection of such trees has an Aldous-Hoover-type representation.

Motivated by problems in Bayesian nonparametrics and probabilistic programming discussed in Staton et al. (2018), we generalize hierarchical exchangeability to a new kind of partial exchangeability for random arrays which we call DAG-exchangeability. In our setting a random array is indexed by N^{|V|} for some DAG G=(V,E), and its exchangeability structure is governed by the edge set E. We prove a representation theorem for such arrays which generalizes the Aldous-Hoover representation theorem, and for which the Austin-Panchenko representation is a special case.

Invariant Manifolds in a Quasi-periodically Forced System with Noise

Series
CDSNS Colloquium
Time
Monday, August 26, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lei ZhangUniversity of Toronto

In this talk, we consider a quasi-periodically forced system arising from the problem of chemical reactions. For we demonstrate efficient algorithms to calculate the normally hyperbolic invariant manifolds and their stable/unstable manifolds using parameterization method. When a random noise is added, we use similar ideas to give a streamlined proof of the existence of the stochastic invariant manifolds.

Topology in complex dynamics

Series
Geometry Topology Seminar Pre-talk
Time
Monday, August 26, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jasmine PowellUniversity of Michigan

The field of complex dynamics melds a number of disciplines, including complex analysis, geometry and topology. I will focus on the influences from the latter, introducing some important concepts and questions in complex dynamics, with an emphasis on how the concepts tie into and can be enhanced by a topological viewpoint.

Dynamical Mapping Classes

Series
Geometry Topology Seminar
Time
Monday, August 26, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jasmine PowellUniversity of Michigan

In complex dynamics, the main objects of study are rational maps on the Riemann sphere. For some large subset of such maps, there is a way to associate to each map a marked torus. Moving around in the space of these maps, we can then track the associated tori and get induced mapping classes. In this talk, we will explore what sorts of mapping classes arise in this way and use this to say something about the topology of the original space of maps.

Large Eddy Simulation of Turbulent Sooting Flames: Subfilter Scale Modeling of Soot Sources and Species Transport

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 26, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Suo YangUniversity of Minnesota – Twin Cities

Soot particles are major pollutants emitted from propulsion and power generation systems. In turbulent combustion, soot evolution is heavily influenced by soot-turbulence-chemistry interaction. Specifically, soot is formed during combustion of fuel-rich mixtures and is rapidly oxidized before being transported by turbulence into fuel-lean mixtures. Furthermore, different soot evolution mechanisms are dominant over distinct regions of mixture fraction. For these reasons, a new subfilter Probability Density Function (PDF) model is proposed to account for this distribution of soot in mixture fraction space. At the same time, Direct Numerical Simulation (DNS) studies of turbulent nonpremixed jet flames have revealed that Polycyclic Aromatic Hydrocarbons (PAH), the gas-phase soot precursors, are confined to spatially intermittent regions of low scalar dissipation rates due to their slow formation chemistry. The length scales of these regions are on the order of the Kolmogorov scale (i.e., the smallest turbulence scale) or smaller, where molecular diffusion dominates over turbulent mixing irrespective of the large-scale turbulent Reynolds number. A strain-sensitivity parameter is developed to identify such species. A Strain-Sensitive Transport Approach (SSTA) is then developed to model the differential molecular transport in the nonpremixed “flamelet” equations. These two models are first validated a priori against a DNS database, and then implemented within a Large Eddy Simulation (LES) framework, applied to a series of turbulent nonpremixed sooting jet flames, and validated via comparisons with experimental measurements of soot volume fraction.

Solving Algebraic Equations

Series
Undergraduate Seminar
Time
Monday, August 26, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Josephine YuGeorgia Tech

We will discuss how to solve algebraic equations using symbolic, numerical, and combinatorial methods.

Prym–Brill–Noether loci of special curves

Series
Algebra Seminar
Time
Tuesday, August 27, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Steven Creech & Derek WuGeorgia Tech

Prym varieties are a class of abelian varieties that arise from double covers of tropical or algebraic curves. The talk will revolve around the Prym--Brill--Noether locus, a subvariety determined by divisors of a given rank. Using a connection to Young tableaux, we determine the dimensions of these loci for certain tropical curves, with applications to algebraic geometry. Furthermore, these loci are always pure dimensional and path connected. Finally, we compute the first homologies of the Prym--Brill--Noether loci under certain conditions.

Highly-oscillatory evolution equations with time-varying vanishing frequency: asymptotics and numerics

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, August 28, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammed LemouUniversité de Rennes 1 et ENS de Rennes

special time

In asymptotic analysis and numerical approximation of highly-oscillatory evolution problems, it is commonly supposed that the oscillation frequency is either constant or, at least, bounded from below by a strictly positive constant uniformly in time. Allowing for the possibility that the frequency actually depends on time and vanishes at some instants introduces additional difficulties from both the asymptotic analysis and numerical simulation points of view. I will present a first step towards the resolution of these difficulties. In particular, we show that it is still possible in this situation to infer the asymptotic behavior of the solution at the price of more intricate computations and we derive a second order uniformly accurate numerical method.

Averages over Discrete Spheres

Series
Analysis Seminar
Time
Wednesday, August 28, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGeorgia Tech

Fine properties of spherical averages in the continuous setting include
$L^p$  improving estimates
and sparse bounds, interesting in the settings of a fixed radius, lacunary sets of radii, and the
full set of radii. There is a parallel theory in the setting of discrete spherical averages, as studied
by Elias Stein, Akos Magyar, and Stephen Wainger. We recall the continuous case, outline the
discrete case, and illustrate a unifying proof technique. Joint work with Robert Kesler, and
Dario Mena Arias.

Anti-concentration of random sums with dependent terms, and singularity of sparse Bernoulli matrices

Series
High Dimensional Seminar
Time
Wednesday, August 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Konstantin TikhomirovGeorgiaTech

We will consider the problem of estimating the singularity probability of sparse Bernoulli matrices, and a related question of anti-concentration of weighted sums of dependent Bernoulli(p) variables.

Based on joint work with Alexander Litvak.

Averaging for Vlasov and Vlasov-Poisson equations

Series
Applied and Computational Mathematics Seminar
Time
Thursday, August 29, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Philippe ChartierInria-Rennes/IRMAR/ENS Rennes

special time

Our ambition is to derive asymptotic equations of the Vlasov-Poisson system in the strong magntic field regime. This work is thus an attempt to (re-)derive rigorously gyrokinetic equations and to design uniformly accurate methods for solving fast-oscillating kinetic equations, i.e. methods whose cost and accuracy do not depend the stiffness parameter. The main tools used to reach this objective are averaging and PDE techniques. In this talk, I will focus primarily on the first.

Universality for the time constant in critical first-passage percolation

Series
Stochastics Seminar
Time
Thursday, August 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronGeorgia Tech

In first-passage percolation, we place i.i.d. nonnegative weights (t_e) on the edges of a graph and consider the induced weighted graph metric T(x,y). When the underlying graph is the two-dimensional square lattice, there is a phase transition in the model depending on the probability p that an edge weight equals zero: for p<1/2, the metric T(0,x) grows linearly in x, whereas for p>1/2, it remains stochastically bounded. The critical case occurs for p=1/2, where there are large but finite clusters of zero-weight edges. In this talk, I will review work with Wai-Kit Lam and Xuan Wang in which we determine the rate of growth for T(0,x) up to a constant factor for all critical distributions. Then I will explain recent work with Jack Hanson and Wai-Kit Lam in which we determine the "time constant" (leading order constant in the rate of growth) in the special case where the graph is the triangular lattice, and the weights are placed on the vertices. This is the only class of distributions known where this time constant is computable: we find that it is an explicit function of the infimum of the support of t_e intersected with (0,\infty).

Stability and instability issues for kinetic gravitational systems

Series
Applied and Computational Mathematics Seminar
Time
Friday, August 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammed LemouUniversité de Rennes 1 et ENS de Rennes

Special time

I will start by giving a short overview of the history around stability and instability issues in gravitational systems driven by kinetic equations. Conservations properties and  families of non-homogeneous steady states will be first presented. A well-know conjecture in both astrophysics and mathematics communities was that  "all steady states of the gravitational Vlasov-Poisson system which are decreasing functions of the energy, are non linearly stable up to space translations".  We explain why the traditional variational approaches are not sufficient to answer this conjecture. An alternative approach, inspired by astrophysics literature, will be then presented and quantitative stability inequalities will be shown, therefore solving the above conjecture for Vlasov-Poisson systems. This have been achieved by using a refined notion for the rearrangement of functions and Poincaré-like  functional inequalities. For other systems like the so-called Hamiltonian Mean Field (HMF), the decreasing property of the steady states is no more sufficient to guarantee their stability. An additional explicit criteria is needed, under which their non-linear stability is proved. This criteria is sharp as  non linear instabilities can be constructed if it is not satisfied.

Learning and Testing for Graphical Models

Series
ACO Student Seminar
Time
Friday, August 30, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Zongchen ChenCS, Georgia Tech

In this talk we introduce some machine learning problems in the setting of undirected graphical models, also known as spin systems. We take proper colorings as a representative example of a hard-constraint graphical model. The classic problem of sampling a proper coloring uniformly at random of a given graph has been well-studied. Here we consider two inverse problems: Given random colorings of an unknown graph G, can we recover the underlying graph G exactly? If we are also given a candidate graph H, can we tell if G=H? The former problem is known as structure learning in the machine learning field and the latter is called identity testing. We show the complexity of these problems in different range of parameters and compare these results with the corresponding decision and sampling problems. Finally, we give some results of the analogous problems for the Ising model, a typical soft-constraint model. Based on joint work with Ivona Bezakova, Antonio Blanca, Daniel Stefankovic and Eric Vigoda.

Positively Hyperbolic Varieties

Series
Algebra Seminar
Time
Tuesday, September 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

A multivariate complex polynomial is called stable if any line in any positive direction meets its hypersurface only at real points.  Stable polynomials have close relations to matroids and hyperbolic programming.  We will discuss a generalization of stability to algebraic varieties of codimension larger than one.  They are varieties which are hyperbolic with respect to the nonnegative Grassmannian, following the notion of hyperbolicity studied by Shamovich, Vinnikov, Kummer, and Vinzant. We show that their tropicalization and Chow polytopes have nice combinatorial structures related to braid arrangements and positroids, generalizing some results of Choe, Oxley, Sokal, Wagner, and Brändén on Newton polytopes and tropicalizations of stable polynomials. This is based on joint work with Felipe Rincón and Cynthia Vinzant.

Some combinatorics of RNA branching

Series
Mathematical Biology Seminar
Time
Wednesday, September 4, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christine HeitschGeorgia Tech

Understanding the folding of RNA sequences into three-dimensional structures is one of the fundamental challenges in molecular biology.  For example, the branching of an RNA secondary structure is an important molecular characteristic yet difficult to predict correctly.  However, recent results in geometric combinatorics (both theoretical and computational) yield new insights into the distribution of optimal branching configurations, and suggest new directions for improving prediction accuracy.

Construction of unstable quasi-periodic solutions for a system of coupled NLS equations.

Series
CDSNS Colloquium
Time
Wednesday, September 4, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Victor Vilaça Da RochaGeorgia Tech

The systems of coupled NLS equations occur in some physical problems, in particular in nonlinear optics (coupling between two optical waveguides, pulses or polarized components...).

From the mathematical point of view, the coupling effects can lead to truly nonlinear behaviors, such as the beating effect (solutions with Fourier modes exchanging energy) of Grébert, Paturel and Thomann (2013). In this talk, I will use the coupling between two NLS equations on the 1D torus to construct a family of linearly unstable tori, and therefore unstable quasi-periodic solutions.

The idea is to take profit of the Hamiltonian structure of the system via the construction of a Birkhoff normal form and the application of a KAM theorem. In particular, we will see of this surprising behavior (this is the first example of unstable tori for a 1D PDE) is strongly related to the existence of beating solutions.

This is a work in collaboration with Benoît Grébert (Université de Nantes).

An Introduction to Quantum Topology

Series
Research Horizons Seminar
Time
Wednesday, September 4, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wade BloomquistGeorgia Tech

We will explore some of the basic notions in quantum topology.  Our focus will be on introducing some of the foundations of diagrammatic algebra through the lens of the Temperley-Lieb algebra.  We will attempt to show how these diagrammatic techniques can be applied to low dimensional topology.  Every effort will be made to make this as self-contained as possible.  If time permits we will also discuss some applications to topological quantum computing.

Bases of exponentials and tilings

Series
Analysis Seminar
Time
Wednesday, September 4, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mihalis KolountzakisUniversity of Crete

Mathematicians have long been trying to understand which domains admit an orthogonal (or, sometimes, not) basis of exponentials of the form , for some set of frequencies (this is the spectrum of the domain). It is well known that we can do so for the cube, for instance (just take ), but can we find such a basis for the ball? The answer is no, if we demand orthogonality, but this problem is still open when, instead of orthogonality, we demand just a Riesz basis of exponentials.

 
This question has a lot to do with tiling by translation (i.e., with filling up space with no overlaps by translating around an object). Fuglede originally conjectured that an orthogonal exponential basis exists if and only if the domain can tile space by translation. This has been disproved in its full generality but when one adds side conditions, such as, for instance, a lattice set of frequencies, or the space being a group of a specific type, or many other natural conditions, the answer is often unknown, and sometimes known to be positive or known to be negative. A major recent  development is the proof (2019) by Lev and Matolcsi of the truth of the Fuglede conjecture for convex bodies in all dimensions.
 
This is a broad area of research, branching out by varying the side conditions on the domain or the group in which the domain lives, or by relaxing the orthogonality condition or even allowing time-frequency translates of a given function to serve as basis elements (Gabor, or Weyl-Heisenberg, bases). When working with both exponential bases and tiling problems the crucial object of study turns out to be the zero set of the Fourier Transform of the indicator function of the domain we care about. In particular we want to know how large structured sets this zero set contains, for instance how large difference sets it contains or what kind of tempered distributions it can support.
 
In this talk I will try to show how these objects are tied together, what has been done recently, and indicate specific open problems.

0-Concordance of 2-Knots

Series
Geometry Topology Student Seminar
Time
Wednesday, September 4, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anubhav Mukherjee

 A 2-knot is a smooth embedding of S^2 in S^4, and a 0-concordance of 2-knots is a concordance with the property that every regular level set of the concordance is just a collection of S^2's. In his thesis, Paul Melvin proved that if two 2-knots are 0-concordant, then a Gluck twist along one will result in the same smooth 4-manifold as a Gluck twist on the other. He asked the following question: Are all 2-knots 0-slice (i.e. 0-concordant to the unknot)? I will explain all relevant definitions, and mostly follow the paper by Nathan Sunukjian on this topic.

On the QQR codes in coding theory

Series
High Dimensional Seminar
Time
Wednesday, September 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jing HaoGeorgia Tech

In this talk I will briefly talk about coding theory and introduce a specific family of codes called Quasi-quadratic residue (QQR) codes. These codes have large minimum distances, which means they have good error-correcting capabilities. The weights of their codewords are directly related to the number of points on corresponding hyperelliptic curves. I will show a heuristic model to count the number of points on hyperelliptic curves using a coin-toss model, which in turn casts light on the relation between efficiency and the error-correcting capabilities of QQR codes. I will also show an interesting phenomenon we found about the weight enumerator of QQR codes. Lastly, using the bridge between QQR codes and hyperelliptic curves again, we derive the asymptotic behavior of point distribution of a family of hyperelliptic curves using results from coding theory.

Outliers in spectrum of sparse Wigner matrices

Series
Stochastics Seminar
Time
Thursday, September 5, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Konstantin TikhomirovGeorgia Tech

We study the effect of sparsity on the appearance of outliers in the semi-circular law. As a corollary of our main results, we show that, for the Erdos-Renyi random graph with parameter p, the second largest eigenvalue is (asymptotically almost surely) detached from the bulk of the spectrum if and only if pn

The Combinatorial Nullstellensatz and its applications

Series
Graph Theory Working Seminar
Time
Thursday, September 5, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Youngho YooGeorgia Tech

<br />

In 1999, Alon proved the “Combinatorial Nullstellensatz” which resembles Hilbert’s Nullstellensatz and gives combinatorial structure on the roots of a multivariate polynomial. This method has numerous applications, most notably in additive number theory, but also in many other areas of combinatorics. We will prove the Combinatorial Nullstellensatz and give some of its applications in graph theory.

 

Differential Privacy: The Census Algorithm

Series
ACO Student Seminar
Time
Friday, September 6, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Samantha PettiCS, Georgia Tech

For the first time in 2020, the US Census Bureau will apply a differentially private algorithm before publicly releasing decennial census data. Recently, the Bureau publicly released their code and end-to-end tests on the 1940 census data at various privacylevels. We will outline the DP algorithm (which is still being developed) and discuss the accuracy of these end-to-end tests. In particular, we focus on the bias and variance of the reported population counts. Finally, we discuss the choices the Bureau has yet to make that will affect the balance between privacy and accuracy. This talk is based on joint work with Abraham Flaxman.

Newton polygons and zeroes of polynomials

Series
Student Algebraic Geometry Seminar
Time
Monday, September 9, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Trevor GunnGeorgia Tech

We will define Newton polygons for polynomials over a valued field and prove a couple theorems using them. For example, relating the valuations of the roots of the polynomial to the slopes of the Newton polygon and proving the algebraic closure of the Puiseux series in characteristic 0.

Link Concordance and Groups

Series
Geometry Topology Seminar
Time
Monday, September 9, 2019 - 14:00 for
Location
Speaker
Miriam KuzbaryGeorgia Tech

This is a general audience Geometry-Topology talk where I will give a broad overview of my research interests and techniques I use in my work.  My research concerns the study of link concordance using groups, both extracting concordance data from group theoretic invariants and determining the properties of group structures on links modulo concordance. Milnor's invariants are one of the more fundamental link concordance invariants; they are thought of as higher order linking numbers and can be computed using both Massey products (due to Turaev and Porter) and higher order intersections (due to Cochran). In my work, I have generalized Milnor's invariants to knots inside a closed, oriented 3-manifold M. I call this the Dwyer number of a knot and show methods to compute it for null-homologous knots inside a family of 3-manifolds with free fundamental group. I further show Dwyer number provides the weight of the first non-vanishing Massey product in the knot complement in the ambient manifold. Additionally, I proved the Dwyer number detects knots K in M bounding smoothly embedded disks in specific 4-manifolds with boundary M which are not concordant to the unknot in M x I. This result further motivates my definition of a new link concordance group in joint work with Matthew Hedden using the knotification construction of Ozsv'ath and Szab'o. Finally, I will briefly discuss my recent result that the string link concordance group modulo its pure braid subgroup is non-abelian.

Mathematical Approaches to Image Processing and Data Understanding

Series
Undergraduate Seminar
Time
Monday, September 9, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Sung Ha KangGeorgia Tech

Starting from Total Variation, this talk will overview some mathematical approaches for image processing, such as removing noise.  We will also consider numerical application to data understanding. A few more application maybe presented.

The geometry of phylogenetic tree spaces

Series
Mathematical Biology Seminar
Time
Wednesday, September 11, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bo Lin Georgia Tech

Phylogenetic trees  are  the fundamental  mathematical  representation  of evolutionary processes in biology. As data objects, they are characterized by the challenges associated with "big data," as well as the  complication that  their  discrete  geometric  structure  results  in  a  non-Euclidean phylogenetic  tree  space,  which  poses  computational  and   statistical limitations.

In this  talk, I  will compare  the geometric  and statistical  properties between a  well-studied framework  -  the BHV  space, and  an  alternative framework that  we  propose, which  is  based on  tropical  geometry.  Our framework exhibits analytic,  geometric, and  topological properties  that are desirable for  theoretical studies in  probability and statistics,  as well  as  increased  computational  efficiency.  I  also  demonstrate  our approach on an example of seasonal influenza data.

\ell^p improving and sparse inequalities for averages along the square integers

Series
Analysis Seminar
Time
Wednesday, September 11, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rui HanGeorgia Tech

Let $f$ be defined on $\mathbb{Z}$. Let $A_N f$ be the average of $f$ along the square integers. 

We show that $A_N$ satisfies a local scale-free $\ell^{p}$-improving estimate, for $3/2

This parameter range is sharp up to the endpoint. We will also talk about sparse bounds for the maximal function 
$A f =\sup _{N\geq 1} |A_Nf|$. This work is based on a joint work with Michael T. Lacey and Fan Yang.

Unfoldings of 3D Polyhedra

Series
Geometry Topology Student Seminar
Time
Wednesday, September 11, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nicholas Barvinok

Cutting a polyhedron along some spanning tree of its edges will yield an isometric immersion of the polyhedron into the plane. If this immersion is also injective, we call it an unfolding. In this talk I will give some general results about unfoldings of polyhedra. There is also a notion of pseudo-edge unfolding, which involves cutting on a pseudo edge graph, as opposed to an edge graph. A pseudo edge graph is a 3-connected graph on the surface of the polyhedron, whose vertices coincide with the vertices of the polyhedron, and whose edges are geodesics. I will explain part of the paper "Pseudo-Edge Unfoldings of Convex Polyhedra," a joint work of mine with Professor Ghomi, which proves the existence of a convex polyhedron with a pseudo edge graph along which it is not unfoldable. Finally, I will discuss some connections between pseudo edge graphs and edge graphs. 

Geometric inequalities via information theory

Series
High Dimensional Seminar
Time
Wednesday, September 11, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jing HaoGeorgia Tech

Using ideas from information theory, we establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions.  In the first part of the talk, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for log-concave random variables. In the second part, we investigate a new notion of Fisher information which we call the L1-Fisher information and show that certain superadditivity properties of the L1-Fisher information lead to lower bounds for the surface areas of polyconvex sets in terms of its slices.

Regularity and strict positivity of densities for the stochastic heat equation

Series
Stochastics Seminar
Time
Thursday, September 12, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Le ChenEmory University
In this talk, I will present some recent works on the stochastic heat equation with a general multiplicative Gaussian noise that is white in time and colored in space, including space-time white noise. We will show both regularity and strict positivity of the densities of the solution. The difficulties of this study include rough initial conditions, degenerate diffusion coefficient, and weakest possible assumptions on the correlation function of the noise. In particular, our results cover the parabolic Anderson model starting from a Dirac delta initial measure. The spatial one-dimensional case is based on the joint-work with Yaozhong Hu and David Nualart [1] and the higher dimension case with Jingyu Huang [2].
 
[1] L. Chen, Y. Hu and D. Nualart,  Regularity and strict positivity of densities for the nonlinear stochastic heat equation. Memoirs of American Mathematical Society, accepted in 2018, to appear in 2020. 
[2] L. Chen, J. Huang, Regularity and strict positivity of densities for the stochastic heat equation on Rd. Preprint at arXiv:1902.02382.

Quasirandom permutations

Series
Graph Theory Seminar
Time
Friday, September 13, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Dan KralMasaryk University and University of Warwick

A combinatorial structure is said to be quasirandom if it resembles a random structure in a certain robust sense. For example, it is well-known that a graph G with edge-density p is quasirandom if and only if the density of C_4 in G is p^4+o(p^4); this property is known to equivalent to several other properties that hold for truly random graphs.  A similar phenomenon was established for permutations: a permutation is quasirandom if and only if the density of every 4-point pattern (subpermutation) is 1/4!+o(1).  We strengthen this result by showing that a permutation is quasirandom if and only if the sum of the densities of eight specific 4-point patterns is 1/3+o(1). More generally, we classify all sets of 4-point patterns having such property.

The talk is based on joint work with Timothy F. N. Chan, Jonathan A. Noel, Yanitsa Pehova, Maryam Sharifzadeh and Jan Volec.

Graph Algorithms and Offline Data Structures

Series
ACO Student Seminar
Time
Friday, September 13, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Richard PengCS, Georgia Tech

Graphs, which in their simplest forms are vertices connected by edges,
are widely used in high performance computing, machine learning and
network science. This talk will use recent progresses on two
well-studied algorithmic problems in static and dynamic graph,
max-flows and dynamic matchings, to discuss a methodology for
designing faster algorithm for large graphs. This approach is
motivated by a fundamental phenomenon in data structures: the
advantages of offline data structures over online ones.

I will start by describing how work on max-flows led to a focus on
finding short paths in residual graphs, and how investigating more
global notions of progress in residual graphs led to a more
sophisticated and general understanding of iterative methods and
preconditioning. I will then discuss a similar phenomenon in dynamic
graphs, where maintaining a large matching seems to require the online
detection of short augmenting paths, but can once again be
circumvented through the offline construction of smaller equivalent
graphs.

Gram spectrahedra

Series
Student Algebraic Geometry Seminar
Time
Monday, September 16, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Jaewoo JungGeorgia Tech

The structure of sums-of-squares representations of (nonnegative homogeneous) polynomials is one interesting subject in real algebraic geometry. The sum-of-squares representations of a given polynomial are parametrized by the convex body of positive semidefinite Gram matrices, called the Gram spectrahedron. In this talk, I will introduce Gram spectrahedron, connection to toric variety, a new result that if a variety $X$ is arithmetically Cohen-Macaulay and a linearly normal variety of almost minimal degree (i.e. $\deg(X)=\text{codim}(X)+2$), then every sum of squares on $X$ is a sum of $\dim(X)+2$ squares.

Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 16, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andre WibisonoGeorgia Tech
Sampling is a fundamental algorithmic task. Many modern applications require sampling from complicated probability distributions in high-dimensional spaces. While the setting of logconcave target distribution is well-studied, it is important to understand sampling beyond the logconcavity assumption. We study the Unadjusted Langevin Algorithm (ULA) for sampling from a probability distribution on R^n under isoperimetry conditions. We show a convergence guarantee in Kullback-Leibler (KL) divergence assuming the target distribution satisfies log-Sobolev inequality and the log density has bounded Hessian. Notably, we do not assume convexity or bounds on higher derivatives. We also show convergence guarantees in Rényi divergence assuming the limit of ULA satisfies either log-Sobolev or Poincaré inequality. Joint work with Santosh Vempala (arXiv:1903.08568).

The “generating function” of configuration spaces, as a source for explicit formulas and representation stability

Series
Geometry Topology Seminar
Time
Monday, September 16, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nir GadishMassachusetts Institute of Technology

As countless examples show, sequences of complicated objects should be studied all at once via the formalism of generating functions. We apply this point of view to the homology and combinatorics of (orbit-)configuration spaces: using the notion of twisted commutative algebras, which categorify exponential generating functions. With this idea the configuration space “generating function” factors into an infinite product, whose terms are surprisingly easy to understand. Beyond the intrinsic aesthetic of this decomposition and its quantitative consequences, it also gives rise to representation stability - a notion of homological stability for sequences of representations of differing groups.

Continuing the Fraction

Series
Undergraduate Seminar
Time
Monday, September 16, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Doron LubinskyGeorgia Tech

Continued fractions play a key role in number theory, especially in understanding how well we can approximate irrational numbers by rational numbers. They also play an important role in function theory, in understanding how well we can approximate analytic functions by rational functions. We discuss a few of the main achievements of the theory.

Periodic Dynamics of a Local Perturbation in the Isotropic XY Model

Series
Math Physics Seminar
Time
Monday, September 16, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Livia CorsiUniversita&#039; di Roma 3

I will consider the isotropic XY chain with a transverse magnetic field acting on a single site, and analyze the long time behaviour of the time-dependent state of the system when a periodic perturbation drives the impurity. I will show that, under some conditions, the state approaches a periodic orbit synchronized with the forcing. Moreover I will provide the explicit rate of convergence to the asymptotics. This is a joint work with G. Genovese.

M-convexity and Lorentzian polynomials

Series
Lorentzian Polynomials Seminar
Time
Tuesday, September 17, 2019 - 14:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

I will discuss a proof of the statement that the support of a Lorentzian polynomial is M-convex, based on sections 3-5 of the Brändén—Huh paper.

The energy conservation of inhomogeneous Euler equations

Series
PDE Seminar
Time
Tuesday, September 17, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Cheng YuUniversity of Florida

In this talk, I will discuss from a mathematical viewpoint some sufficient conditions that guarantee the energy equality for weak solutions. I will mainly focus on a fluid equation example, namely the inhomogeneous Euler equations. The main tools are the commutator Lemmas.  This is a joint work with Ming Chen.

Species network inference under the coalescent model

Series
Mathematical Biology Seminar
Time
Wednesday, September 18, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hector BanosGeorgia Tech

When hybridization plays a role in evolution, networks are necessary to describe species-level relationships. In this talk, we show that most topological features of a level-1 species network (networks with no interlocking cycles) are identifiable from gene tree topologies under the network multispecies coalescent model (NMSC). We also present the theory behind NANUQ, a new practical method for the inference of level-1 networks under the NMSC.

A complex analytic approach to mixed spectral problems

Series
Analysis Seminar
Time
Wednesday, September 18, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Speaker
Burak HatinoğluTexas A&amp;M

This talk is about an application of complex function theory to inverse spectral problems for differential operators. We consider the Schroedinger operator on a finite interval with an L^1-potential. Borg's two spectra theorem says that the potential can be uniquely recovered from two spectra. By another classical result of Marchenko, the potential can be uniquely recovered from the spectral measure or Weyl m-function. After a brief review of inverse spectral theory of one dimensional regular Schroedinger operators, we will discuss complex analytic methods for the following problem: Can one spectrum together with subsets of another spectrum and norming constants recover the potential?

Surface bundles in topology, algebraic geometry, and group theory

Series
Geometry Topology Student Seminar
Time
Wednesday, September 18, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Justin LanierGeorgia Tech

I will give an introduction to surface bundles and will discuss several places where they arise naturally. A surface bundle is a fiber bundle where the fiber is a surface. A first example is the mapping torus construction for 3-manifolds, which is a surface bundle over the circle. Topics will include a construction of 4-manifolds as well as section problems related to surface bundles. The talk will be based on a forthcoming Notices survey article by Salter and Tshishiku.

John’s ellipsoid is not good for approximation

Series
High Dimensional Seminar
Time
Wednesday, September 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Han HuangGeorgia Tech

We study the subject of approximation of convex bodies by polytopes in high dimension.  

For a convex set K in R^n, we say that K can be approximated by a polytope of m facets by a distance R>1 if there exists a polytope of P m facets such that K contains P and RP contains K. 

When K is symmetric, the maximal volume ellipsoid of K is used heavily on how to construct such polytope of poly(n) facets to approximate K. In this talk, we will discuss why the situation is entirely different for non-symmetric convex bodies.

Deep Generative Models in the Diffusion Limit

Series
Stochastics Seminar
Time
Thursday, September 19, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Maxim RaginskyECE Department, University of Illinois at Urbana-Champaign

In deep generative models, the latent variable is generated by a time-inhomogeneous Markov chain, where at each time step we pass the current state through a parametric nonlinear map, such as a feedforward neural net, and add a small independent Gaussian perturbation. In this talk, based on joint work with Belinda Tzen, I will discuss the diffusion limit of such models, where we increase the number of layers while sending the step size and the noise variance to zero. The resulting object is described by a stochastic differential equation in the sense of Ito. I will first show that sampling in such generative models can be phrased as a stochastic control problem (revisiting the classic results of Föllmer and Dai Pra) and then build on this formulation to quantify the expressive power of these models. Specifically, I will prove that one can efficiently sample from a wide class of terminal target distributions by choosing the drift of the latent diffusion from the class of multilayer feedforward neural nets, with the accuracy of sampling measured by the Kullback-Leibler divergence to the target distribution.

Bounds on Ramsey Games via Alterations

Series
ACO Student Seminar
Time
Friday, September 20, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
He GuoMath, Georgia Tech

In this talk we introduce a refined alteration approach for constructing $H$-free graphs: we show that removing all edges in $H$-copies of the binomial random graph does not significantly change the independence number (for suitable edge-probabilities); previous alteration approaches of Erdös and Krivelevich remove only a subset of these edges. We present two applications to online graph Ramsey games of recent interest, deriving new bounds for Ramsey, Paper, Scissors games and online Ramsey numbers (each time extending recent results of Fox–He–Wigderson and Conlon–Fox–Grinshpun–He).
Based on joint work with Lutz Warnke.

An Introduction to Braids and Complex Polynomials

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 23, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DoughertyColby College

In this informal chat, I will introduce the braid group and several equivalent topological perspectives from which to view it. In particular, we will discuss the role that complex polynomials play in this setting, along with a few classical results.

The Jacobian Conjecture

Series
Student Algebraic Geometry Seminar
Time
Monday, September 23, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Stephen McKeanGeorgia Tech

The Jacobian Conjecture is a famous open problem in commutative algebra and algebraic geometry. Suppose you have a polynomial function $f:\mathbb{C}^n\to\mathbb{C}^n$. The Jacobian Conjecture asserts that if the Jacobian of $f$ is a non-zero constant, then $f$ has a polynomial inverse. Because the conjecture is so easy to state, there have been many claimed proofs that turned out to be false. We will discuss some of these incorrect proofs, as well as several correct theorems relating to the Jacobian Conjecture.

Applied differential geometry and harmonic analysis in deep learning regularization

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 23, 2019 - 13:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wei ZhuDuke University

Deep neural networks (DNNs) have revolutionized machine learning by gradually replacing the traditional model-based algorithms with data-driven methods. While DNNs have proved very successful when large training sets are available, they typically have two shortcomings: First, when the training data are scarce, DNNs tend to suffer from overfitting. Second, the generalization ability of overparameterized DNNs still remains a mystery. In this talk, I will discuss two recent works to “inject” the “modeling” flavor back into deep learning to improve the generalization performance and interpretability of the DNN model. This is accomplished by DNN regularization through applied differential geometry and harmonic analysis. In the first part of the talk, I will explain how to improve the regularity of the DNN representation by enforcing a low-dimensionality constraint on the data-feature concatenation manifold. In the second part, I will discuss how to impose scale-equivariance in network representation by conducting joint convolutions across the space and the scaling group. The stability of the equivariant representation to nuisance input deformation is also proved under mild assumptions on the Fourier-Bessel norm of filter expansion coefficients.

Intrinsic Combinatorics for the Space of Generic Complex Polynomials

Series
Geometry Topology Seminar
Time
Monday, September 23, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DoughertyColby College

The space of degree-n complex polynomials with distinct roots appears frequently and naturally throughout mathematics, but its shape and structure could be better understood. In recent and ongoing joint work with Jon McCammond, we present a deformation retraction of this space onto a simplicial complex with rich structure given by the combinatorics of noncrossing partitions. In this talk, I will describe the deformation retraction and the resulting combinatorial data associated to each generic complex polynomial. We will also discuss a helpful comment from Daan Krammer which connects our work with the ideas of Bill Thurston and his collaborators.

Rational Tangles

Series
Undergraduate Seminar
Time
Monday, September 23, 2019 - 15:00 for
Location
Skiles 171
Speaker
Jennifer HomGeorgia Tech

A knot is a smooth embedding of a circle into R^3. Closely related are tangles, which are properly embedded arcs in a 3-ball. We will model certain tangles using jump ropes and relate this to Conway's classification of rational tangles.

Online algorithms for knapsack and generalized assignment problem under random-order arrival

Series
ACO Seminar
Time
Tuesday, September 24, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Arindam KhanComputer Science and Automation, Indian Institute of Science, Bangalore

For online optimization, the input instance is revealed in a sequence of steps and, after each step, the algorithm has to take an immediate and irrevocable decision based on the previous inputs. Online algorithms produce a sequence of decisions for such problems without the complete information of the future. In the worst-case analysis of online optimization problems, sometimes, it is impossible to achieve any bounded competitive ratio. An interesting way to bypass these impossibility results is to incorporate a stochastic component into the input model. In the random-order arrival model, the adversary specifies an input instance in advance but the input appears according to a random permutation. The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. In this talk, we will present improved competitive algorithms under random-order arrival for these two problems. This is joint work with Susanne Albers and Leon Ladewig.

On the relativistic Landau equation

Series
PDE Seminar
Time
Tuesday, September 24, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Maja TaskovicEmory University
In kinetic theory, a large system of particles is described by the particle density function. The Landau equation, derived by Landau in 1936, is one such example. It models a dilute hot plasma with fast moving particles that interact via Coulomb interactions. This model does not include the effects of Einstein’s theory of special relativity. However, when particle velocities are close to the speed of light, which happens frequently in a hot plasma, then relativistic effects become important. These effects are captured by the relativistic Landau equation, which was derived by Budker and Beliaev in 1956. 
 
We study the Cauchy problem for the spatially homogeneous relativistic Landau equation with Coulomb interactions. The difficulty of the problem lies in the extreme complexity of the kernel in the relativistic collision operator. We present a new decomposition of such kernel. This is then used to prove the global Entropy dissipation estimate, the propagation of any polynomial moment for a weak solution, and the existence of a true weak solution for a large class of initial data. This is joint work with Robert M. Strain.

Insertions on Double Occurrence Words

Series
Mathematical Biology Seminar
Time
Wednesday, September 25, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel CruzGeorgia Tech

A double occurrence word (DOW) is a word in which every symbol appears exactly twice; two DOWs are equivalent if one is a symbol-to-symbol image of the other. In the context of genomics, DOWs and operations on DOWs have been used in studies of DNA rearrangement. By modeling the DNA rearrangement process using DOWs, it was observed that over 95% of the scrambled genome of the ciliate Oxytricha trifallax could be described by iterative insertions of the ``repeat pattern'' and the ``return pattern''. These patterns generalize square and palindromic factors of DOWs, respectively. We introduce a notion of inserting repeat/return words into DOWs and study how two distinct insertions into the same word can produce equivalent DOWs. Given a DOW w, we characterize the structure of  w which allows two distinct insertions to yield equivalent DOWs. This characterization depends on the locations of the insertions and on the length of the inserted repeat/return words and implies that when one inserted word is a repeat word and the other is a return word, then both words must be trivial (i.e., have only one symbol). The characterization also introduces a method to generate families of words recursively.

Variants of the Christ-Kiselev lemma and an application to the maximal Fourier restriction

Series
Analysis Seminar
Time
Wednesday, September 25, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Vjekoslav KovacUniversity of Zagreb

Back in the year 2000, Christ and Kiselev introduced a useful "maximal trick" in their study of spectral properties of Schro edinger operators.
The trick was completely abstract and only at the level of basic functional analysis and measure theory. Over the years it was reproven,
generalized, and reused by many authors. We will present its recent application in the theory of restriction of the Fourier transform to
surfaces in the Euclidean space.

Graph Theory and Heegaard Floer Homology

Series
Geometry Topology Student Seminar
Time
Wednesday, September 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyun Ki MinGeorgia Tech

I will talk about a connection between graph theory and sutured Floer homology. In fact, there is a one to one correspondence between hypergraphs of a planar bipartite graph and the dimension of sutured Floer homology of a complement of a neighborhood of special alternating link In a three sphere. This is based on the work of Juhas, Kalman and Rasmussen.

Size of nodal domains for Erdős–Rényi Graph

Series
High Dimensional Seminar
Time
Wednesday, September 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Han HuangGeorgia Tech

In the realm of Laplacians of Riemannian manifolds, nodal domains have been the subject of intensive research for well over a hundred years. 

Given a Riemannian manifold M, let f be an eigenfunctions f of the Laplacian with respect to some boundary conditions.  A nodal domain associated with f is the maximal connected subset of the domain M  for which the f does not change sign.

Here we examine the discrete cases, namely we consider nodal domains for graphs. Dekel-Lee-Linial shows that for a Erdős–Rényi graph G(n, p), with high probability there are exactly two nodal domains for each eigenvector corresponding to a non-leading eigenvalue.  We prove that with high probability, the sizes of these nodal domains are approximately equal to each other. 

 

A proof of the Sensitivity Conjecture

Series
ACO Colloquium
Time
Thursday, September 26, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao HuangEmory University
In the n-dimensional hypercube graph, one can easily choose half of the vertices such that they induce an empty graph. However, having even just one more vertex would cause the induced subgraph to contain a vertex of degree at least \sqrt{n}. This result is best possible, and improves a logarithmic lower bound shown by Chung, Furedi, Graham and Seymour in 1988. In this talk we will discuss a very short algebraic proof of it.
 

As a direct corollary of this purely combinatorial result, the sensitivity and degree of every boolean function are polynomially related. This solves an outstanding foundational problem in theoretical computer science, the Sensitivity Conjecture of Nisan and Szegedy.

Beyond Submodular Maximization

Series
ACO Student Seminar
Time
Friday, September 27, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mehrdad GhadiriCS, Georgia Tech

In the past decade, the catalog of algorithms available to combinatorial optimizers has been substantially extended to settings which allow submodular objective functions. One significant recent result was a tight (1-1/e)-approximation for maximizing a non-negative monotone submodular function subject to a matroid constraint. These algorithmic developments were happening concurrently with research that found a wealth of new applications for submodular optimization in machine learning, recommender systems, and algorithmic game theory.

 

The related supermodular maximization models also offer an abundance of applications, but they appeared to be highly intractable even under simple cardinality constraints and even when the function has a nice structure. For example, the densest subgraph problem - suspected to be highly intractable - can be expressed as a monotonic supermodular function which has a particularly nice form. Namely, the objective can be expressed by a quadratic form $x^T A x$ where $A$ is a non-negative, symmetric, 0-diagonal matrix. On the other hand, when the entries $A(u,v)$ form a metric, it has been shown that the associated maximization problems have constant factor approximations. Inspired by this, we introduce a parameterized class of non-negative functions called meta-submodular functions that can be approximately maximized within a constant factor. This class includes metric diversity, monotone submodular and other objectives appearing in the machine learning and optimization literature. A general meta-submodular function is neither submodular nor supermodular and so its multi-linear extension does not have the nice convexity/concavity properties which hold for submodular functions. They do, however, have an intrinsic one-sided smoothness property which is essential for our algorithms. This smoothness property might be of independent interest.

Finite element approximation of invariant manifolds by the parameterization method

Series
CDSNS Colloquium
Time
Monday, September 30, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jorge GonzalezFlorida Atlantic University

We consider the problem of computing unstable manifolds for equilibrium solutions of parabolic PDEs posed on irregular spatial domains. This new approach is based on the parameterization method, a general functional analytic framework for studying invariant manifolds of dynamical systems. The method leads to an infinitesimal invariance equation describing the unstable manifold. A recursive scheme leads to linear homological equations for the jets of the manifold which are solved using the finite element method. One feature of the method is that we recover the dynamics on the manifold in addition to its embedding.  We implement the method for some example problems with polynomial and non-polynomial nonlinearities posed on various non-convex two dimensional domains. We provide numerical support for the accuracy of the computed manifolds using the natural notion of a-posteriori error admitted by the parameterization method. This is joint work with J.D. Mireles-James and Necibe Tuncer. 

Geometry Topology Seminar Pre-talk: Fundamental groups of projective varieties by Corey Bregman

Series
Geometry Topology Seminar Pre-talk
Time
Monday, September 30, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Corey BregmanBrandeis University

A question going back to Serre asks which groups arise as fundamental groups of smooth, complex projective varieties, or more generally, compact Kaehler manifolds.  The most basic examples of these are surface groups, arising as fundamental groups of 1-dimensional projective varieties.  We will survey known examples and restrictions on such groups and explain the special role surface groups play in their classification. Finally, we connect this circle of ideas to more general questions about surface bundles and mapping class groups. 

The essential variety and degrees of minimal problems

Series
Student Algebraic Geometry Seminar
Time
Monday, September 30, 2019 - 13:15 for 1 hour (actually 50 minutes)
Location
Skiles
Speaker
Tim DuffGA Tech

It is a fundamental problem in computer vision to describe the geometric relations between two or more cameras that view the same scene -- state of the art methods for 3D reconstruction incorporate these geometric relations in a nontrivial way. At the center of the action is the essential variety: an irreducible subvariety of P^8 of dimension 5 and degree 10 whose homogeneous ideal is minimal generated by 10 cubic equations. Taking a linear slice of complementary dimension corresponds to solving the "minimal problem" of 5 point relative pose estimation. Viewed algebraically, this problem has 20 solutions for generic data: these solutions are elements of the special Euclidean group SE(3) which double cover a generic slice of the essential variety. The structure of these 20 solutions is governed by a somewhat mysterious Galois group (ongoing work with Regan et. al.)

We may ask: what other minimal problems are out there? I'll give an overview of work with Kohn, Pajdla, and Leykin on this question. We have computed the degrees of many minimal problems via computer algebra and numerical methods. I am inviting algebraic geometers at large to attack these problems with "pen and paper" methods: there is still a wide class of problems to be considered, and the more tools we have, the better.

Geometry Topology Seminar : Surface bundles and complex projective varieties by Corey Bregman

Series
Geometry Topology Seminar
Time
Monday, September 30, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Corey BregmanBrandeis University

Kodaira, and independently Atiyah, gave the first examples of surface bundles over surfaces whose signature does not vanish, demonstrating that signature need not be multiplicative.  These examples, called Kodaira fibrations, are in fact complex projective surfaces admitting a holomorphic submersion onto a complex curve, whose fibers have nonconstant moduli. After reviewing the Atiyah-Kodaira construction, we consider Kodaira fibrations with nontrivial holomorphic invariants in degree one. When the dimension of the invariants is at most two, we show that the total space admits a branched covering over a product of curves.

Variational Problems in Capillarity

Series
Undergraduate Seminar
Time
Monday, September 30, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
John McCuanGeorgia Tech

I will describe a few classical problems in capillarity and the associated classical variational framework.  These problems include the well-known shape and rise height problems for the meniscus in a tube as well as the problems associated with sessile and pendent drops. I will briefly discuss elements of recent modifications of the variational theory allowing floating objects.  Finally, I will describe a few open problems. 

Sharp diameter bound on the spectral gap for quantum graphs

Series
Math Physics Seminar
Time
Monday, September 30, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kenny JonesEmory

We establish an upper bound on the spectral gap for compact quantum graphs which depends only on the diameter and total number of vertices. This bound is asymptotically sharp for pumpkin chains with number of edges tending to infinity. This is a joint work with D. Borthwick and L. Corsi.

Certifying solutions to a square analytic system

Series
Algebra Seminar
Time
Tuesday, October 1, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kisun LeeGeorgia Tech

In this talk, we discuss about methods for proving existence and uniqueness of a root of a square analytic system in a given region. For a regular root, Krawczyk method and Smale's $\alpha$-theory are used. On the other hand, when a system has a multiple root, there is a separation bound isolating the multiple root from other roots. We define a simple multiple root, a multiple root whose deflation process is terminated by one iteration, and establish its separation bound. We give a general framework to certify a root of a system using these concepts.

Existence of a family of solutions in state-dependent delay equations

Series
Dynamical Systems Working Seminar
Time
Tuesday, October 1, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jiaqi YangGeorgia Tech
Given an analytic two-dimensional ordinary differential equation which admits a limit cycle, we consider the singular perturbation of it by adding a state-dependent delay. We show that for small enough perturbation, there exist a limit cycle and a two-dimensional family of solutions to the perturbed state-dependent delay equation (SDDE), which resemble the solutions of the original ODE. 
More precisely, for the original ODE, there is a parameterization of the limit cycle and its stable manifold. We show that, there is a very similar parameterization that gives a 2-dimensional family of solutions of the SDDE. 
In our work, we analyze the parameterization, and find functional equations to be satisfied (invariance equations). We prove a theorem in \emph{``a posteriori''} format, that is, if there are approximate solutions of the invariance equations, then there are true solutions of the invariance equations nearby (with appropriate choices of norms). An algorithm which follows from the constructive proof of above theorem has been implemented. 
 
This is a joint work with Joan Gimeno and Rafael de la Llave.

Mason's Conjecture

Series
Lorentzian Polynomials Seminar
Time
Tuesday, October 1, 2019 - 14:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Trevor GunnGeorgia Tech

Using what we have studied in the Brändén-Huh paper, we will go over the proof of the ultra-log-concavity version of Mason's conjecture.

Isodiametry, variance, and regular simplices from particle interactions

Series
PDE Seminar
Time
Tuesday, October 1, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tongseok LimShanghaiTech University

We study the geometry of minimizers of the interaction energy functional. When the interaction potential is mildly repulsive, it is known to be hard to characterize those minimizers due to the fact that they break the rotational symmetry, suggesting that the problem is unlikely to be resolved by the usual convexity or symmetrization techniques from the calculus of variations. We prove that, if the repulsion is mild and the attraction is sufficiently strong, the minimizer is unique up to rotation and exhibits a remarkable simplex-shape rigid structure. As the first crucial step we consider the maximum variance problem of probability measures under the constraint of bounded diameter, whose answer in one dimension was given by Popoviciu in 1935.

Heights and moments of abelian varieties

Series
Algebra Seminar
Time
Wednesday, October 2, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Farbod ShokriehUnviersity of Washington

We give a formula relating various notions of heights of abelian varieties. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener, and it extends the Faltings-Silverman formula for elliptic curves. We also discuss the case of Jacobians in some detail, where graphs and electrical networks will play a key role.   Based on joint works with Robin de Jong (Leiden).

Clustering strings with mutations using an expectation-maximization algorithm

Series
Mathematical Biology Seminar
Time
Wednesday, October 2, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Afaf Saaidi Georgia Tech

An expectation-maximization (EM) algorithm is a powerful clustering method that was initially developed to fit Gaussian mixture distributions. In the absence of a particular probability density function, an EM algorithm aims to estimate the "best" function that maximizes the likelihood of data being generated by the model. We present an EM algorithm which addresses the problem of clustering "mutated" substrings of similar parent strings such that each substring is correctly assigned to its parent string. This problem is motivated by the process of simultaneously reading similar RNA sequences during which various substrings of the sequence are produced and could be mutated; that is, a substring may have some letters changed during the reading process. Because the original RNA sequences are similar, a substring is likely to be assigned to the wrong original sequence. We describe our EM algorithm and present a test on a simulated benchmark which shows that our method yields a better assignment of the substrings than what has been achieved by previous methods. We conclude by discussing how this assignment problem applies to RNA structure prediction.

The isoperimetric inequality

Series
Research Horizons Seminar
Time
Wednesday, October 2, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohammad GhomiGeorgia Tech

The classical isoperimetric inequality states that in Euclidean space spheres form the least perimeter enclosures for any give volume. We will review the historic development of this result in mathematics, and various approaches to proving it. Then we will discuss how one of these approaches, which is a variational argument, may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, in order to generalize the isoperimetric inequality.

H-cobordisms and corks

Series
Geometry Topology Student Seminar
Time
Wednesday, October 2, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

Stephen Smale’s h-cobordism Theorem was a landmark result in the classification of smooth manifolds. It paved the way towards solutions for the topological Poincaré and Schoenflies conjectures in dimensions greater than 5. Later, building on this, Freedman’s work applied these techniques to 4 manifolds. I shall discuss the ideas relating to h-cobordisms and the proof, which is a wonderful application of handlebody theory and the Whitney trick. Time permitting, we shall explore the world of smooth 4 manifolds further, and talk about cork twists.

Invertibility of inhomogenuous random matrices

Series
High Dimensional Seminar
Time
Wednesday, October 2, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Galyna LivshytsGeorgia Tech

We will show the sharp estimate on the behavior of the smallest singular value of random matrices under very general assumptions. One of the steps in the proof is a result about the efficient discretization of the unit sphere in an n-dimensional euclidean space. Another step involves the study of the regularity of the behavior of lattice sets. Some elements of the proof will be discussed. Based on the joint work with Tikhomirov and Vershynin.

Total Curvature and the isoperimetric inequality: Proving the Cartan-Hadamard conjecture

Series
School of Mathematics Colloquium
Time
Thursday, October 3, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Mohammad GhomiGeorgia Institute of Technology

The classical isoperimetric inequality states that in Euclidean space spheres provide unique enclosures of least perimeter for any given volume. In this talk we discuss how this inequality may be extended to spaces of nonpositive curvature, known as Cartan-Hadamard manifolds, as conjectured by Aubin, Gromov, Burago, and Zalgaller in 1970s and 80s. The proposed proof is based on a comparison formula for total curvature of level sets in Riemannian manifolds, and estimates for the smooth approximation of the signed distance function, via inf-convolution and Reilly type formulas among other techniques. Immediate applications include sharp extensions of Sobolev and Faber-Krahn inequalities to spaces of nonpositive curvature. This is joint work with Joel Spruck.

Counting critical subgraphs in k-critical graphs

Series
Graph Theory Seminar
Time
Thursday, October 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUniversity of Science and Technology of China

A graph is $k$-critical if its chromatic number is $k$ but any its proper subgraph has chromatic number less than $k$. Let $k\geq 4$. Gallai asked in 1984 if any $k$-critical graph on $n$ vertices contains at least $n$ distinct $(k-1)$-critical subgraphs. Improving a result of Stiebitz, Abbott and Zhou proved in 1995 that every such graph contains $\Omega(n^{1/(k-1)})$ distinct $(k-1)$-critical subgraphs. Since then no progress had been made until very recently, Hare resolved the case $k=4$ by showing that any $4$-critical graph on $n$ vertices contains at least $(8n-29)/3$ odd cycles. We mainly focus on 4-critical graphs and develop some novel tools for counting cycles of specified parity. Our main result shows that any $4$-critical graph on $n$ vertices contains $\Omega(n^2)$ odd cycles, which is tight up to a constant factor by infinite many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite graphs, which may be of independent interest. Using the tools, we also give a very short proof to the Gallai's problem for the case $k=4$. Moreover, we improve the longstanding lower bound of Abbott and Zhou to $\Omega(n^{1/(k-2)})$ for the general case $k\geq 5$. Joint work with Tianchi Yang.

Expander decomposition: applications to dynamic and distributed algorithms

Series
ACO Student Seminar
Time
Friday, October 4, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thatchaphol SaranurakCS, Toyota Technological Institute at Chicago

Expander decomposition has been a central tool in designing graph algorithms in many fields (including fast centralized algorithms, approximation algorithms and property testing) for decades. Recently, we found that it also gives many impressive applications in dynamic graph algorithms and distributed graph algorithms. In this talk, I will survey these recent results based on expander decomposition, explain the key components for using this technique, and give some toy examples on how to apply these components.

The Kac Model and (Non-)Equilibrium Statistical Mechanics

Series
SIAM Student Seminar
Time
Friday, October 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Prof. Federico Bonetto (Distinguished Speaker) GT Math

In 1959 Mark Kac introduced a simple model for the evolution 
of a gas of hard spheres undergoing elastic collisions. The main 
simplification consisted in replacing deterministic collisions with 
random Poisson distributed collisions.

It is possible to obtain many interesting results for this simplified 
dynamics, like estimates on the rate of convergence to equilibrium and 
validity of the Boltzmann equation. The price paid is that this system 
has no space structure.

I will review some classical results on the Kac model and report on an 
attempt to reintroduce some form of space structure and non-equilibrium 
evolution in a way that preserve the mathematical tractability of the 
system.
 

The foundation of a matroid

Series
Student Algebraic Geometry Seminar
Time
Monday, October 7, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles
Speaker
Tianyi ZhangGA Tech

Foundation is a powerful tool to understand the representability of matroids. The foundation of a matroid is a pasture which is an algebraic structure genrealize the field. I will briefly introduce matroids, algebraic structures (especially pastures) and matroid representability. I will also give some examples on how foundation works in representation of matroids.

Multiscale Modeling and Computation of Optically Manipulated Nano Devices

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 7, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Professor Di LiuMichigan State University

We present a multiscale modeling and computational scheme for optical-
mechanical responses of nanostructures. The multi-physical nature of
the problem is a result of the interaction between the electromagnetic
(EM) field, the molecular motion, and the electronic excitation. To
balance accuracy and complexity, we adopt the semi-classical approach
that the EM field is described classically by the Maxwell equations,
and the charged particles follow the Schr ̈oidnger equations quantum
mechanically. To overcome the numerical challenge of solving the high
dimensional multi-component many- body Schr ̈odinger equations, we
further simplify the model with the Ehrenfest molecular dynamics to
determine the motion of the nuclei, and use the Time- Dependent
Current Density Functional Theory (TD-CDFT) to calculate the
excitation of the electrons. This leads to a system of coupled
equations that computes the electromagnetic field, the nuclear
positions, and the electronic current and charge densities
simultaneously. In the regime of linear responses, the resonant
frequencies initiating the out-of-equilibrium optical-mechanical
responses can be formulated as an eigenvalue problem. A
self-consistent multiscale method is designed to deal with the well
separated space scales. The isomerization of Azobenzene is presented as a numerical example.

Joint UGA-GT Topology Seminar at GT: Smooth 4-Manifolds and Higher Order Corks

Series
Geometry Topology Seminar
Time
Monday, October 7, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Paul MelvinBryn Mawr College

It is a remarkable fact that some compact topological 4-manifolds X admit infinitely many exotic smooth structures, a phenomenon unique to dimension four.  Indeed a fundamental open problem in the subject is to give a meaningful description of the set of all such structures on any given X.  This talk will describe one approach to this problem when X is simply-connected, via cork twisting.  First we'll sketch an argument to show that any finite list of smooth manifolds homeomorphic to X can be obtained by removing a single compact contractible submanifold (or cork) from X, and then regluing it by powers of a boundary diffeomorphism.  In fact, allowing the cork to be noncompact, the collection of all smooth manifolds homeomorphic to X can be obtained in this way.  If time permits, we will also indicate how to construct a single universal noncompact cork whose twists yield all smooth closed simply-connected 4-manifolds.  This is joint work with Hannah Schwartz.

Solutions of initial value problems of ordinary differential equations.

Series
Undergraduate Seminar
Time
Monday, October 7, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Luca DieciGeorgia Tech

This presentation reviews different concepts of solution of a differential equation, in particular stressing the need to modify the classical theory when we want to deal with discontinuous systems.  We will review the concept of classical solution, and then of Caratheodory solution and Filippov solution, motivating with simple examples the need for these extensions.

Joint UGA-GT Topology Seminar at GT: Upper bounds on the topological slice genus via twisting operations

Series
Geometry Topology Seminar
Time
Monday, October 7, 2019 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Duncan McCoyUQAM
I will explain how null-homologous twisting operations can be used to obtain bounds on the topological slice genus. In particular, I will discuss how one can obtain upper bounds on the topological slice genera of torus knots and satellite knots using these operations.

Efficient Representations of Correlated Data as Tensor Networks

Series
Math Physics Seminar
Time
Monday, October 7, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Glen EvenblySchool of Physics, Georgia Tech
Tensors networks are a formalism for expressing high-order tensors as networks of low-order tensors, thus can offer a compact representation of certain high-dimensional datasets. Originally developed in the context of quantum many-body theory, where they are used to efficiently represent quantum wave-functions, tensor networks have since found application in big data analytics, error correction, classical data compression and machine learning.
 
In this talk I will provide a brief introduction to the theory and application of tensor networks, and outline some of the current research directions in the tensor network program.    
 

Deterministic algorithms for counting bases of a matroid

Series
Lorentzian Polynomials Seminar
Time
Tuesday, October 8, 2019 - 14:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mohit SinghGeorgia Tech

We will discuss a deterministic, polynomial (in the rank) time approximation algorithm for counting the bases of a given matroid and for counting common bases between two matroids of the same rank. This talk follows the paper (https://arxiv.org/abs/1807.00929) of Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant.

Partially ordered Reeb graphs, tree decompositions, and phylogenetic networks

Series
Mathematical Biology Seminar
Time
Wednesday, October 9, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Anastasios StefanouMathematical Biosciences Institute, Ohio State University

Inspired by the interval decomposition of persistence modules and the extended Newick format of phylogenetic networks, we show that, inside the larger category of partially ordered Reeb graphs, every Reeb graph with n leaves and first Betti number s, is equal to a coproduct of at most 2s trees with (n + s) leaves. An implication of this result, is that Reeb graphs are fixed parameter tractable when the parameter is the first Betti number. We propose partially ordered Reeb graphs as a natural framework for modeling time consistent phylogenetic networks.  We define a notion of interleaving distance on partially ordered Reeb graphs which is analogous to the notion of interleaving distance for ordinary Reeb graphs. This suggests using the interleaving distance as a novel metric for time consistent phylogenetic networks.

Geometric Approaches for Metastability in Stochastic Dynamical Systems with Applications

Series
Research Horizons Seminar
Time
Wednesday, October 9, 2019 - 13:10 for
Location
Skiles 005
Speaker
Larissa SerdukovaGeorgia Tech

NOTE THE UNUSUAL TIME: This seminar takes place from 1:10-1:50 for THIS WEEK ONLY.

Basin of attraction for a stable equilibrium point is an effective concept for stability in deterministic systems. However, it does not contain information on the external perturbations that may affect it. The concept of stochastic basin of attraction (SBA) is introduced by incorporating a suitable probabilistic notion of basin. The criteria for the size of the SBA is based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small intensity but also with whose amplitude is proportional or in general is a function of an order parameter. The efficiency of the concept is presented through two applications.

A random walk through sub-riemanian geometry

Series
Analysis Seminar
Time
Wednesday, October 9, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Masha GordinaUniversity of Connecticut

A sub-Riemannian manifold M is a connected smooth manifold such that the only smooth curves in M which are admissible are those whose tangent vectors at any point are restricted to a particular subset of all possible tangent vectors.  Such spaces have several applications in physics and engineering, as well as in the study of hypo-elliptic operators.  We will  construct a random walk on M which converges to a process whose infinitesimal generator  is  one of the natural sub-elliptic  Laplacian  operators.  We will also describe these  Laplacians geometrically and discuss the difficulty of defining one which is canonical.   Examples will be provided.  This is a joint work with Tom Laetsch.

Obstructions to nice branch sets for branched coverings

Series
Geometry Topology Student Seminar
Time
Wednesday, October 9, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech

It is a classical theorem of Alexander that every closed oriented manifold is a piecewise linear branched covering of the sphere. In this talk, we will discuss some obstructions to realizing a manifold as a branched covering of the sphere if we require additional properties (like being a submanifold) on the branch set.

 

Stochastic analysis and geometric functional inequalities

Series
High Dimensional Seminar
Time
Wednesday, October 9, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Masha GordinaUniversity of Connecticut

We will survey different methods of proving functional inequalities for hypoelliptic  diffusions and the corresponding heat kernels. Some of these methods rely on geometric methods such as curvature-dimension inequalities (due to Baudoin-Garofalo), and some are probabilistic  such as coupling, and finally some use structure  theory and a Fourier transform on Lie groups. This is based on joint work with M. Asaad, F. Baudoin, B. Driver, T. Melcher, Ph. Mariano et al.

Maximum height of low-temperature 3D Ising interfaces

Series
Stochastics Seminar
Time
Thursday, October 10, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Reza GheissariUniversity of California, Berkeley

Consider the random surface given by the interface separating the plus and minus phases in a low-temperature Ising model in dimensions $d\geq 3$. Dobrushin (1972) famously showed that in cubes of side-length $n$ the horizontal interface is rigid, exhibiting order one height fluctuations above a fixed point. 

We study the large deviations of this interface and obtain a shape theorem for its pillar, conditionally on it reaching an atypically large height. We use this to analyze the law of the maximum height $M_n$ of the interface: we prove that for every $\beta$ large, $M_n/\log n \to c_\beta$, and $(M_n - \mathbb E[M_n])_n$ forms a tight sequence. Moreover, even though this centered sequence does not converge, all its sub-sequential limits satisfy uniform Gumbel tail bounds. Based on joint work with Eyal Lubetzky. 

Tangles and approximate packing-covering duality

Series
Graph Theory Working Seminar
Time
Thursday, October 10, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Youngho YooGeorgia Tech

 Tangles capture a notion of high-connectivity in graphs which differs from $k$-connectivity. Instead of requiring that a small vertex set $X$ does not disconnect the graph $G$, a tangle “points” to the connected component of $G-X$ that contains most of the “highly connected part”. Developed initially by Robertson and Seymour in the graph minors project, tangles have proven to be a fundamental tool in studying the general structure of graphs and matroids. Tangles are also useful in proving that certain families of graphs satisfy an approximate packing-covering duality, also known as the Erd\H{o}s-P\'osa property. In this talk I will give a gentle introduction to tangles and describe some basic applications related to the Erd\H{o}s-P\'osa property.

 

Fall recess

Series
Algebra Seminar
Time
Tuesday, October 15, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Speaker
No seminar.

Mordell-Weil rank jumps and the Hilbert property

Series
Algebra Seminar
Time
Wednesday, October 16, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Cecília SalgadoUniversidade Federal do Rio de Janeiro

Let X be an elliptic surface with a section defined over a number field. Specialization theorems by Néron and Silverman imply that the rank of the Mordell-Weil group of special fibers is at least equal to the MW rank of the generic fiber. We say that the rank jumps when the former is strictly large than the latter. In this talk, I will discuss rank jumps for elliptic surfaces fibred over the projective line. If the surface admits a conic bundle we show that the subset of the line for which the rank jumps is not thin in the sense of Serre. This is joint work with Dan Loughran.

Host metapopulation, disease epidemiology and host evolution

Series
Mathematical Biology Seminar
Time
Wednesday, October 16, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jing JiaoNIMBioS - University of Tennessee

While most evolutionary studies of host-pathogen dynamics consider pathogen evolution alone or host-pathogen coevolution, for some diseases (e.g., White Nose syndrome in bats), there is evidence that hosts can sometimes evolve more rapidly than their pathogen. In this talk, we will discuss the spatial, temporal, and epidemiological factors may drive the evolutionary dynamics of the host population. We consider a simplified system of two host genotypes that trade off factors of disease robustness and spatial mobility or growth. For diseases that infect hosts for life, we find that migration and disease-driven mortality can have antagonistic effect on host densities when disease selection on hosts is low, but show synergy when selection is high. For diseases that allow hosts to recover with immunity, we explore the conditions under which the disease dies out, becomes endemic, or has periodic outbreaks, and show how these dynamics relate to the relative success of the robust and wild type hosts in the population over time. Overall, we will discuss how combinations of host spatial structure, demography, and epidemiology of infectious disease can significantly influence host evolution and disease prevalence. We will conclude with some profound implications for wildlife conservation and zoonotic disease control.

Effect of non-conservative perturbations on homoclinic and heteroclinic orbits

Series
CDSNS Colloquium
Time
Wednesday, October 16, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Marian GideaYeshiva University
he motivation of this work comes from astrodynamics. Consider a spacecraft traveling  between the Earth and the Moon. Assume that the spacecraft follows a zero-cost orbit  by coasting along the hyperbolic invariant manifolds associated to periodic orbits near the equilibrium points, at some fixed energy level. We want to make a maneuver -- impulsive or low thrust --  in order  to jump to the hyperbolic invariant manifold  corresponding to a different energy level. Mathematically, turning on the thrusters amounts to a adding a small, non-conservative, time-dependent perturbation to the original system. Given such an explicit perturbation, we would like to  estimate its effect on the orbit of the spacecraft.
 
We study this question in the context of two simple models: the pendulum-rotator system, and the planar circular restricted three-body problem. Homoclinic/heteroclinic excursions can be described via the scattering map, which gives the future asymptotics of an orbit as a function of the past asymptotics. We add a time-dependent, non-conservative perturbation, and provide explicit formulas, in terms of convergent integrals, for the perturbed scattering map.

Partial Torelli Groups

Series
Geometry Topology Student Seminar
Time
Wednesday, October 16, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel MinahanGeorgia Tech

The Torelli group is the subgroup of the mapping class group acting trivially on homology.  We will discuss some basic properties of the Torelli group and explain how to define it for surfaces with boundary.  We will also give some Torelli analogues of the Birman exact sequence.

The moduli space of matroids

Series
Algebra Seminar
Time
Wednesday, October 16, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Oliver LorscheidInstituto Nacional de Matematica Pura e Aplicada (IMPA)

Matroids are combinatorial gadgets that reflect properties of linear algebra in situations where this latter theory is not available. This analogy prescribes that the moduli space of matroids should be a Grassmannian over a suitable base object, which cannot be a field or a ring; in consequence usual algebraic geometry does not provide a suitable framework. In joint work with Matt Baker, we use algebraic geometry over F1, the so-called field with one element, to construct such moduli spaces. As an application, we streamline various results of matroid theory and find simplified proofs of classical theorems, such as the fact that a matroid is regular if and only if it is binary and orientable.

We will dedicate the first half of this talk to an introduction of matroids and their generalizations. Then we will outline how to use F1-geometry to construct the moduli space of matroids. In a last part, we will explain why this theory is so useful to simplify classical results in matroid theory.

Regularity Decompositions for Sparse Pseudorandom Graphs

Series
High Dimensional Seminar
Time
Wednesday, October 16, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gregory M BodwinGeorgia Tech

 A powerful method for analyzing graphs is to first apply regularity lemmas, which roughly state that one can partition the graph into a few parts so that it looks mostly random between the parts, and then apply probabilistic tools from there.  The drawback of this approach is that it only works in general when the input graph is very dense: standard regularity lemmas are trivial already for n-node graphs on "only" <= n^{1.99} edges.

In this work we prove extensions of several standard regularity lemmas to sparse graphs, which are nontrivial so long as the graph spectrum is not too far from that of a random graph.  We then apply our notion of "spectral pseudorandomness" to port several notable regularity-based results in combinatorics and theoretical computer science down to sparser graphs.

 

Joint work with Santosh Vempala.

 

Understanding statistical-vs-computational tradeoffs via the low-degree likelihood ratio

Series
Stochastics Seminar
Time
Thursday, October 17, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex WeinNew York University

High-dimensional inference problems such as sparse PCA and planted clique often exhibit statistical-vs-computational tradeoffs whereby there is no known polynomial-time algorithm matching the performance of the optimal estimator. I will discuss an emerging framework -- based on the so-called low-degree likelihood ratio -- for precisely predicting these tradeoffs and giving rigorous evidence for computational hardness in the conjectured hard regime. This method was originally proposed in a sequence of works on the sum-of-squares hierarchy, and the key idea is to study whether or not there exists a low-degree polynomial that succeeds at a given statistical task.

In the second part of the talk, I will give an application to the algorithmic problem of finding an approximate ground state of the SK (Sherrington-Kirkpatrick) spin glass model. I will explain two variants of this problem: "optimization" and "certification." While optimization can be solved in polynomial time [Montanari'18], we give rigorous evidence (in the low-degree framework) that certification cannot be. This result reveals a fundamental discrepancy between two classes of algorithms: local search succeeds while convex relaxations fail.

Based on joint work with Afonso Bandeira and Tim Kunisky (https://arxiv.org/abs/1902.07324 and https://arxiv.org/abs/1907.11636).

On the circumference of essentially 4-connected planar graphs

Series
Time
Thursday, October 17, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael WigalGeorgia Tech
Carsten Thomassen showed for planar graphs $G$ that there exists a cycle $C$ such that every component of $G - C$ has at most three neighbors on C. This implies that 4-connected planar graphs are hamiltonian. A natural weakening is to find the circumference of essentially 4-connected planar graphs. We will cover an outline of Thomassen's proof and what is currently known on circumference bounds for essentially 4-connected planar graphs. 
 

On the breakdown of small amplitude breathers for the reversible Klein-Gordon equation

Series
CDSNS Colloquium
Time
Friday, October 18, 2019 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 06
Speaker
Marcel GuardiaUniv. Politec. de Catalunya

Breathers are periodic in time spatially localized solutions of evolutionary PDEs. They are known to exist for the sine-Gordon equation but are believed to be rare in other Klein-Gordon equations. Exchanging the roles of time and position, breathers can be interpreted as homoclinic solutions to a steady solution. In this talk, I will explain how to obtain an asymptotic formula for the distance between the stable and unstable manifold of the steady solution when the steady solution has weakly hyperbolic one dimensional stable and unstable manifolds. Their distance is exponentially small with respect to the amplitude of the breather and therefore classical perturbative techniques cannot be applied. This is a joint work with O. Gomide, T. Seara and C. Zeng.

Oral Exam-Bounds on regularity of quadratic monomial ideals and Pythagoras numbers on projections of Rational Normal Curves

Series
Other Talks
Time
Friday, October 18, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jaewoo JungGeorgia Tech

In this talk, I will introduce my old(1.) and current works(2.).

1. Bounds on regularity of quadratic monomial ideals

We can understand invariants of monomial ideals by invariants of clique (or flag) complex of  corresponding graphs. In particular, we can bound the Castelnuovo-Mumford regularity (which is a measure of algebraic complexity) of the ideals by bounding homol0gy of corresponding (simplicial) complex. The construction and proof of our main theorem are simple, but it provides (and improves) many new bounds of regularities of quadratic monomial ideals.

2. Pythagoras numbers on projections of Rational Normal Curves

Observe that forms of degree $2d$ are quadratic forms of degree $d$. Therefore, to study the cone of  sums of squares of degree $2d$, we may study quadratic forms on Veronese embedding of degree $d$.  In particular,  the rank of sums of squares (of degree $2d$) can be studied via Pythagoras number  (which is a classical notion) on the Veronese embedding of degree $d$. In this part, I will compute the Pythagoras number on rational normal curve (which is a veronese embedding of $\mathbb{P}^1$) and discuss about how Pythagoras numbers are changed when we take some projections away from some points.

Twisted Schubert polynomials

Series
Combinatorics Seminar
Time
Friday, October 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ricky LiuNorth Carolina State University

We will describe a twisted action of the symmetric group on the polynomial ring in n variables and use it to define a twisted version of Schubert polynomials. These twisted Schubert polynomials are known to be related to the Chern-Schwartz-MacPherson classes of Schubert cells in the flag variety. Using properties of skew divided difference operators, we will show that these twisted Schubert polynomials are monomial positive and give a combinatorial formula for their coefficients.

New mechanisms of instability in Hamiltonian systems

Series
CDSNS Colloquium
Time
Monday, October 21, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 06
Speaker
Tere M. SearaUniv. Politec. de Catalunya

In this talk we present some recent results which allow to prove
instability in near integrable Hamiltonian systems. We will show how
these mechanisms are suitable to apply to concrete systems but also are
useful to obtain Arnold diffusion in a large set  of Hamiltonian systems.

Groups as geometric objects

Series
Geometry Topology Seminar Pre-talk
Time
Monday, October 21, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jacob RussellCUNY Graduate Center

Gromov revolutionized the study of finitely generated groups by showing that an intrinsic metric on a group is intimately connected with the algebra of the group. This point of view has produced deep applications not only in group theory, but also topology, geometry, logic, and dynamical systems. We will start at the beginning of this story with the definitions of these metrics on groups and how notions from classical geometry can be generalized to this context.  The focus will be on how the "hyperbolic groups" exhibit geometric and dynamical feature reminiscent of the hyperbolic plane and its isometries.

Tropical convex hulls of convex sets

Series
Student Algebraic Geometry Seminar
Time
Monday, October 21, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Cvetelina HillGeorgia Tech

This talk is based on work in progress with Sara Lamboglia and Faye Simon. We study the tropical convex hull of convex sets and of tropical curves. Basic definitions of tropical convexity and tropical curves will be presented, followed by an overview of our results on the interaction between tropical and classical convexity. Lastly, we study a tropical analogue of an inequality bounding the degree of a projective variety in classical algebraic geometry; we show a tropical proof of this result for a special class of tropical curves. 

 

The geometry of subgroup combination theorems

Series
Geometry Topology Seminar
Time
Monday, October 21, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jacob RussellCUNY Graduate Center

While producing subgroups of a group by specifying generators is easy, understanding  the structure of such a subgroup is notoriously difficult problem.  In the case of hyperbolic groups, Gitik utilized a local-to-global property for geodesics to produce an elegant condition that ensures a subgroup generated by two elements (or more generally generated by two subgroups) will split as an amalgamated free product over the intersection of the generators. We show that the mapping class group of a surface and many other important groups have a similar local-to-global property from which an analogy of Gitik's result can be obtained.   In the case of the mapping class group, this produces a combination theorem for the dynamically and topologically important convex cocompact subgroups.  Joint work with Davide Spriano and Hung C. Tran.

Mixing and Explosions for the Generalized Recurrent Set

Series
CDSNS Colloquium
Time
Monday, October 21, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skyles 006
Speaker
Jim WisemanAgnes Scott

We consider the strong chain recurrent set and the generalized recurrent set for continuous maps of compact metric spaces.  Recent work by Fathi and Pageault has shown a connection between the two sets, and has led to new results on them.  We discuss a structure theorem for transitive/mixing maps, and classify maps that permit explosions in the size of the recurrent sets.

Surfaces: BIG and small

Series
Undergraduate Seminar
Time
Monday, October 21, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Dr. Marissa LovingGeorgia Tech

As a geometric group theorist, my favorite type of manifold is a surface and my favorite way to study surfaces is by considering the mapping class group, which is the collection of symmetries of a surface. In this talk, we will think bigger than your average low-dimensional topologist and consider surfaces of infinite type and their associated “big” mapping class groups.

Proof of Kac's conjecture for the hard sphere gas

Series
Math Physics Seminar
Time
Monday, October 21, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LossGeorgia Tech
This talk will be about the master equation approach to kinetic theory pioneered by Mark Kac. Specifically, the physically realistic case of three dimensional hard spheres will be considered.  This process describes an ensemble of  hard spheres undergoing binary energy and momentum preserving collisions.  One measure for the speed of approach to equilibrium is the gap which was conjectured by Kac to be bounded below by a positive constant independent of the number of particles. In this talk a proof of this conjecture  will be presented. This is joint work with Eric Carlen and Maria Carvalho.

The Mori Dream Space property for blow-ups of projective spaces at points and lines

Series
Algebra Seminar
Time
Tuesday, October 22, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zhuang HeNortheastern University

Mori Dream Spaces are generalizations of toric varieties and, as the name suggests, Mori's minimal model program can be run for every divisor. It is known that for n5, the blow-up of Pn at r very general points is a Mori Dream Space iff rn+3. In this talk we proceed to blow up points as well as lines, by considering the blow-up X of P3 at 6 points in very general position and all the 15 lines through the 6 points. We find that the unique anticanonical section of X is a Jacobian K3 Kummer surface S of Picard number 17. We prove that there exists an infinite-order pseudo-automorphism of X, whose restriction to S is one of the 192 infinite-order automorphisms constructed by Keum.  A consequence is that there are infinitely many extremal effective divisors on X; in particular, X is not a Mori Dream Space. We show an application to the blow-up of Pn (n3) at (n+3) points and certain lines.  We relate this pseudo-automorphism to the structure of the birational automorphism group of P3. This is a joint work with Lei Yang.

Some basics of Markov chain mixing times

Series
Lorentzian Polynomials Seminar
Time
Tuesday, October 22, 2019 - 14:50 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prasad TetaliGeorgia Tech

This is quick tutorial on bounding the mixing time of a finite Markov chain in terms of functional inequalities defining the spectral gap and the entropy constant of a Markov chain. The lecture will include some examples, including bounding the mixing time of the random transposition shuffle and (time permitting) that of the basis-exchange walk on a balanced matroid.

This is intended as a review lecture before Nima Anari’s lectures (during Nov. 4-6) on applications of Lorentzian polynomials, including recent breakthrough analyses of the basis-exchange walk on an arbitrary matroid.

The seed-to-solution method for the Einstein equations and the asymptotic localization problem

Series
PDE Seminar
Time
Tuesday, October 22, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Philippe G. LeFlochSorbonne University and CNRS

I will present a new method of analysis for Einstein’s
constraint equations, referred to as the Seed-to-Solution Method, which
leads to the existence of asymptotically Euclidean manifolds with
prescribed asymptotic behavior. This method generates a (Riemannian)
Einstein manifold from any seed data set consisting of (1): a Riemannian
metric and a symmetric two-tensor prescribed on a topological manifold
with finitely many asymptotically Euclidean ends, and (2): a density
field and a momentum vector field representing the matter content. By
distinguishing between several classes of seed data referred to as tame
or strongly tame, the method encompasses metrics with the weakest
possible decay (infinite ADM mass) or the strongest possible decay
(Schwarzschild behavior). This analysis is based on a linearization of
the Einstein equations (involving several curvature operators from
Riemannian geometry) around a tame seed data set. It is motivated by
Carlotto and Schoen’s pioneering work on the so-called localization
problem for the Einstein equations. Dealing with manifolds with possibly
very low decay and establishing estimates beyond the critical level of
decay requires significantly new ideas to be presented in this talk. As
an application of our method, we introduce and solve a new problem,
referred to as the asymptotic localization problem, at the critical
level of decay. Collaboration with T. Nguyen. Blog: philippelefloch.org

Go with the Flow: a parameterized approach to RNA transcript assembly

Series
Mathematical Biology Seminar
Time
Wednesday, October 23, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Blair Sullivan School of Computing, University of Utah

A central pervasive challenge in genomics is that RNA/DNA must be reconstructed from short, often noisy subsequences. In this talk, we describe a new digraph algorithm which enables this "assembly" when analyzing high-throughput transcriptomic sequencing data. Specifically, the Flow Decomposition problem on a directed ayclic graph asks for the smallest set of weighted paths that “cover” a flow (a weight function on the edges where the amount coming into any vertex is equal to the amount leaving). We describe a new linear-time algorithm solving *k*-Flow Decomposition, the variant where exactly *k* paths are used. Further, we discuss how we implemented and engineered a general Flow Decomposition solver based on this algorithm, and describe its performance on RNA-sequence data.  Crucially, our solver finds exact solutions while achieving runtimes competitive with a state-of-the-art heuristic, and we discuss the implications of our results on the original model selection for transcript assembly in this setting.

Models for DNA-based Tile Self-Assembly

Series
Research Horizons Seminar
Time
Wednesday, October 23, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel CruzGeorgia Tech
A set of elementary building blocks undergoes self-assembly if local interactions govern how this set forms intricate structures. Self-assembly has been widely observed in nature, ranging from the field of crystallography to the study of viruses and multicellular organisms. In this talk, we give an overview of tile assembly models (TAMs) whose elementary building blocks (i.e. tiles) are polygons which have been defined with rules for local interaction. In particular, we present the basic concepts associated with two of the most well-studied TAMs: the abstract Tile Assembly Model (aTAM) and the Two-Handed Assembly Model (2HAM). We show how TAMs are related to the problem of designing nanoscale structures with DNA. We also present some of the major results within this field of study.

Uncertainty principles and Schrodinger operators on fractals

Series
Analysis Seminar
Time
Wednesday, October 23, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kasso OkoudjouUniversity of Maryland and M.I.T.

In the first part of this talk, I will give an overview of a theory of harmonic analysis on a class of fractals that includes the Sierpinski gasket. The starting point of the theory is the introduction by J. Kigami of a Laplacian operator on these fractals. After reviewing the construction of this fractal Laplacian, I will survey some of the properties of its spectrum. In the second part of the talk, I will discuss the fractal analogs of the Heisenberg uncertainty principle, and the spectral properties a class of  Schr\"odinger operators.  

Heegaard Floer obstruction to knot surgery

Series
Geometry Topology Student Seminar
Time
Wednesday, October 23, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hongyi ZhouGeorgia Tech

Which manifold can be obtained from surgery on a knot? Many obstructions to this have been studied. We will discuss some of them, and use Heegaard Floer homology to give an infinite family of seifert fibered integer spheres that cannot be obtained by surgery on a knot in S^3. We will also discuss a recipe to compute HF+ of surgery on a knot (Short review on Heegaard Floer homology included).

Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices

Series
High Dimensional Seminar
Time
Wednesday, October 23, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andre WibisonoGeorgia Tech

Sampling is a fundamental algorithmic task. Many modern applications require sampling from complicated probability distributions in high-dimensional spaces. While the setting of logconcave target distribution is well-studied, it is important to understand sampling beyond the logconcavity assumption. We study the Unadjusted Langevin Algorithm (ULA) for sampling from a probability distribution on R^n under isoperimetry conditions. We show a convergence guarantee in Kullback-Leibler (KL) divergence assuming the target distribution satisfies log-Sobolev inequality and the log density has bounded Hessian. Notably, we do not assume convexity or bounds on higher derivatives. We also show convergence guarantees in Rényi divergence assuming the limit of ULA satisfies either log-Sobolev or Poincaré inequality. Joint work with Santosh Vempala (arXiv:1903.08568).

6-connected graphs are two-three linked

Series
Dissertation Defense
Time
Thursday, October 24, 2019 - 13:40 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Shijie XieSchool of Mathematics, Georgia Tech

Let $G$ be a graph and $a_0, a_1, a_2, b_1,$ and $b_2$ be distinct vertices of $G$. Motivated by their work on Four Color Theorem, Hadwiger's conjecture for $K_6$, and Jorgensen's conjecture, Robertson and Seymour asked when does $G$ contain disjoint connected subgraphs $G_1, G_2$, such that $\{a_0, a_1, a_2\}\subseteq V(G_1)$ and $\{b_1, b_2\}\subseteq V(G_2)$. We prove that if $G$ is 6-connected then such $G_1,G_2$ exist. Joint work with Robin Thomas and Xingxing Yu.

Advisor: Dr. Xingxing Yu (School of Mathematics, Georgia Institute of Technology)

Committee: Dr. Robin Thomas (School of Mathematics, Georgia Institute of Technology), Dr. Prasad Tetali (School of Mathematics, Georgia Institute of Technology), Dr. Lutz Warnke (School of Mathematics, Georgia Institute of Technology), Dr. Richard Peng (School of Computer Science, Georgia Institute of Technology)

Reader: Dr. Gexin Yu (Department of Mathematics, College of William and Mary)

Finite time dynamics of chaotic and random systems

Series
Stochastics Seminar
Time
Thursday, October 24, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonid BunimovichGeorgia Institute of Technology

Everybody are convinced that everything is known about the simplest random process of coin tossing. I will show that it is not the case. Particularly not everything was known for the simplest chaotic dynamical systems like the tent map (which is equivalent to coin tossing). This new area of finite time predictions emerged from a natural new question in the theory of open dynamical systems.

High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm

Series
ACO Student Seminar
Time
Friday, October 25, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wenlong MouEECS, UC Berkeley

We propose a Markov chain Monte Carlo (MCMC) algorithm based on third-order Langevin dynamics for sampling from distributions with log-concave and smooth densities. The higher-order dynamics allow for more flexible discretization schemes, and we develop a specific method that combines splitting with more accurate integration. For a broad class of d-dimensional distributions arising from generalized linear models, we prove that the resulting third-order algorithm produces samples from a distribution that is at most \varepsilon in Wasserstein distance from the target distribution in O(d^{1/3}/ \varepsilon^{2/3}) steps. This result requires only Lipschitz conditions on the gradient. For general strongly convex potentials with α-th order smoothness, we prove that the mixing time scales as O (d^{1/3} / \varepsilon^{2/3} + d^{1/2} / \varepsilon^{1 / (\alpha - 1)} ). Our high-order Langevin diffusion reduces the problem of log-concave sampling to numerical integration along a fixed deterministic path, which makes it possible for further improvements in high-dimensional MCMC problems. Joint work with Yi-An Ma, Martin J, Wainwright, Peter L. Bartlett and Michael I. Jordan.

The proxy point method for rank-structured matrices

Series
Dissertation Defense
Time
Friday, October 25, 2019 - 13:30 for 1.5 hours (actually 80 minutes)
Location
Skiles 311
Speaker
Xin XingSchool of Mathematics, Georgia Tech

Rank-structured matrix representations, e.g., H2 and HSS, are commonly used to reduce computation and storage cost for dense matrices defined by interactions between many bodies. The main bottleneck for their applications is the expensive computation required to represent a matrix in a rank-structured matrix format which involves compressing specific matrix blocks into low-rank form.
We focus on the study and application of a class of hybrid analytic-algebraic compression methods, called the proxy point method. We address several critical problems concerning this underutilized method which limit its applicability. A general form of the method is proposed, paving the way for its wider application in the construction of different rank-structured matrices with kernel functions that are more general than those usually used. Further, we extend the applicability of the proxy point method to compress matrices defined by electron repulsion integrals, which accelerates one of the main computational steps in quantum chemistry. 

Committee members: Prof. Edmond Chow (Advisor, School of CSE, Georgia Tech), Prof. David Sherrill (School of Chemistry and Biochemistry, Georgia Tech), Prof. Jianlin Xia (Department of Mathematics, Purdue University), Prof. Yuanzhe Xi (Department of Mathematics, Emory University), and Prof. Haomin Zhou (School of Mathematics, Georgia Tech).

Spin Dynamics: Algorithms and Spin of Planets

Series
SIAM Student Seminar
Time
Friday, October 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Renyi ChenGT Math

In this talk, we will focus on the spin dynamics of rigid bodies.
Algorithm part: There are many algorithms designed for N body simulations. 
But, to study the climates of a planet, we need to extend the simulation from point mass bodies to rigid bodies.
In the N-rigid-body simulations, we will consider the orientation and angular momentum of the rigid body to understand the spin.
In terms of the algorithm, symplectic integrators are designed by splitting methods. 
Physical part: We studied the spin dynamics of an Earth-like planet in circumbinary systems.
Canonical Delaunay variables and Andoyer variables are applied to split the variables to be slow part and fast part.
Applying averaging method, we approximated the spin dynamics.
From the approximated dynamics, we may draw some interesting physical conclusions.
 

Effective bounds for the measure of rotations

Series
CDSNS Colloquium
Time
Monday, October 28, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Alex HaroUniv. de Barcelona

A fundamental question in Dynamical Systems is to identify regions of
phase/parameter space satisfying a given property (stability,
linearization, etc).  In this talk, given a family of analytic circle
diffeomorphisms depending on a parameter, we obtain effective (almost
optimal) lower bounds of the Lebesgue measure of the set of parameters
for which that diffeomorphism is conjugate to a rigid rotation.
We estimate this measure using an a-posteriori KAM
scheme that relies on quantitative conditions that
are checkable using computer-assistance. We carefully describe
how the hypotheses in our theorems are reduced to a finite number of
computations, and apply our methodology to the case of the
Arnold family, in the far-from-integrable regime.

This is joint work with Jordi Lluis Figueras and Alejandro Luque.

 

Heegaard Floer homology and Seifert manifolds

Series
Geometry Topology Seminar Pre-talk
Time
Monday, October 28, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skile 006
Speaker
Sungkyung KangChinese University of Hong Kong

Heegaard Floer homology gives a powerful invariant of closed 3-manifolds. It is always computable in the purely combinatorial sense, but usually computing it needs a very hard work. However, for certain graph 3-manifolds, its minus-flavored Heegaard Floer homology can be easily computed in terms of lattice homology, due to Nemethi. I plan to give the basic definitions and constructions of Heegaard Floer theory and lattice homology, as well as the isomorphism between those two objects.

Nonnegative symmetric polynomials and sums of squares with many variables

Series
Student Algebraic Geometry Seminar
Time
Monday, October 28, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Jose Gabriel Acevedo HabeychGeorgia Tech

By using the representation theory of the symmetric group we try to compare, with respect to two different bases of the vector space of symmetric forms, the cones of symmetric nonnegative forms and symmetric sums of squares of a fixed even degree when the number of variables goes to infinity.

Analysis and Applications of Nonsmooth Bifurcations

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 28, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 05
Speaker
Oleg MakarenkovUniv Texas at Dallas
In this talk I will first give a brief overview of how nonsmooth bifurcations (border-splitting, grazing, and fold-fold bifurcations) help to rigorously explain the existence of nonsmooth limit cycles in the models of anti-lock braking systems, power converters, integrate-and-fire neurons, and climate dynamics. I will then focus on one particular application that deals with nonsmooth bifurcations in dispersing billiards. In [Nonlinearity 11 (1998)] Turaev and Rom-Kedar discovered that every periodic orbit that is tangent to the boundary of the billiard produces an island of stability upon smoothening the boundary of the billiard. The result to be presented in the talk (joint work with Turaev) proves that any dispersing billiard admits such an arbitrary small perturbation that ensures the occurrence of a tangent periodic orbit.

Connected Floer homology of covering involutions

Series
Geometry Topology Seminar
Time
Monday, October 28, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skile 006
Speaker
Sungkyung KangChinese University of Hong Kong

Using the covering involution on the double branched cover of S3 branched along a knot, and adapting ideas of Hendricks-Manolescu and Hendricks-Hom-Lidman, we define new knot (concordance) invariants and apply them to deduce novel linear independence results in the smooth concordance group of knots. This is a joint work with A. Alfieri and A. Stipsicz.

Knots, Legendrian Knots, and Their Invariants

Series
Undergraduate Seminar
Time
Monday, October 28, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Dr. Caitlin LeversonGeorgia Tech
A knot can be thought of as a piece of string tied up, that then has its ends glued together. As long as we don’t cut the string, any way we move the string in space doesn’t change the knot we are considering. A surprisingly hard and interesting problem is, when handed two knots, how to determine if they are the same knot or not. We can further give structure to our knots and thus the problem, by adding geometric constraints to our knots, yielding what are called Legendrian knots. We can once again try to determine if two Legendrian knots are the same or not. In this talk I will introduce knots, Legendrian knots, and some ways we have to try to distinguish two knots or Legendrian knots, called knot invariants.

Quantum fate of classical solitons

Series
Math Physics Seminar
Time
Monday, October 28, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael PustilnikSchool of Physics, Georgia Tech
This talk will focus on one-dimensional interacting quantum systems near the classical limit described by the Korteweg–de Vries (KdV) equation. Classical excitations in this regime are the well-known solitons, i.e., localized disturbances with particle-like properties, and delocalized waves of density, or phonons. It turns out, however, that the semiclassical description inevitably breaks down at long wavelengths. In this limit, quantum effects become dominant, the system is best described in terms of weakly interacting fermions, and classical solitons and phonons reach their ultimate quantum fate of being demoted to fermionic particles and holes.
 
We will give simple heuristic arguments in support of this claim and present the exact solution for the spectra of elementary excitations. The results are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation. This includes identical bosons with a weak short-range repulsion and identical particles, either bosons or fermions, with a strong long-range repulsion.

Tropical covers with an abelian group action

Series
Algebra Seminar
Time
Tuesday, October 29, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dmitry ZakharovCentral Michigan University

Given a graph X and a group G, a G-cover of X is a morphism of graphs X’ --> X together with an invariant G-action on X’ that acts freely and transitively on the fibers. G-covers are classified by their monodromy representations, and if G is a finite abelian group, then the set of G-covers of X is in natural bijection with the first simplicial cohomology group H1(X,G).

In tropical geometry, we are naturally led to consider more general objects: morphisms of graphs X’ --> X admitting an invariant G-action on X’, such that the induced action on the fibers is transitive, but not necessarily free. A natural question is to classify all such covers of a given graph X. I will show that when G is a finite abelian group, a G-cover of a graph X is naturally determined by two data: a stratification S of X by subgroups of G, and an element of a cohomology group H1(X,S) generalizing the simplicial cohomology group H1(X,G). This classification can be viewed as a tropical version of geometric class field theory, and as an abelianization of Bass--Serre theory.

I will discuss the realizability problem for tropical abelian covers, and the relationship between cyclic covers of a tropical curve C and the corresponding torsion subgroup of Jac(C). The realizability problem for cyclic covers of prime degree turns out to be related to the classical nowhere-zero flow problem in graph theory.

Joint work with Yoav Len and Martin Ulirsch.

Degenerating Einstein spaces

Series
PDE Seminar
Time
Tuesday, October 29, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ruobing ZhangStony Brook University
In the talk we discuss singularity formation of Einstein metrics as the underlying spaces degenerate or collapse. The usual analytic tools such as uniform Sobolev inequalities and nonlinear a priori estimates are unavailable in this context. We will describe an entirely new way to handle these difficulties, and construct degenerating Ricci-flat metrics with quantitative singularity behaviors.

Likelihood challenges for big trees and networks

Series
Mathematical Biology Seminar
Time
Wednesday, October 30, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Claudia Solis-LemusUniversity of Wisconsin-Madison

Usual statistical inference techniques for the tree of life like maximum likelihood and bayesian inference through Markov chain Monte Carlo (MCMC) have been widely used, but their performance declines as the datasets increase (in number of genes or number of species).

I will present two new approaches suitable for big data: one, importance sampling technique for bayesian inference of phylogenetic trees, and two, a pseudolikelihood method for inference of phylogenetic networks.

The proposed methods will allow scientists to include more species into the tree of life, and thus complete a broader picture of evolution.

Spectrum of quasi-periodic Schrodinger operators

Series
Research Horizons Seminar
Time
Wednesday, October 30, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rui HanGeorgia Tech

One of the simplest and, at the same time, most prominent models for the discrete quasi-periodic Schrodinger operator is the almost Mathieu operator (also called the Harper's model). This simple-looking operator is known to present exotic spectral properties. Three (out of fifteen) of Barry Simon's problems on Schrodinger operators in the 21st century concerns the almost Mathieu operator. In 2014, Artur Avila won a Fields Medal for work including the solutions to these three problems. In this talk, I will concentrate on the one concerning the Lebesgue measure of the spectrum. I will also talk about the difficulties in generalizing this result to the extended Harper's model. Students with background in numerics are especially welcome to attend!

Quantum graphs, convex bodies, and a century-old problem of Minkowski

Series
Analysis Seminar
Time
Wednesday, October 30, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yair ShenfeldPrinceton University

That the ball minimizes surface area among all sets of fixed volume, was known since antiquity; this is equivalent to the fact that the ball is the unique set which yields equality in the isoperimetric inequality. But the isoperimetric inequality is only a very special case of quadratic inequalities about mixed volumes of convex bodies, whose equality cases were unknown since the time of Minkowski. This talk is about these quadratic inequalities and their unusual equality cases which we resolved using degenerate diffusions on the sphere. No background in geometry will be assumed. Joint work with Ramon van Handel.

The Ehrhard-Borell inequality and hypoelliptic diffusions

Series
High Dimensional Seminar
Time
Wednesday, October 30, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yair ShenfeldPrinceton University

The Ehrhard-Borell inequality stands at the top of the pyramid of Gaussian inequalities. It is a powerful and delicate statement about the convexity of the Gaussian measure. In this talk I will discuss the inequality and its beautiful proof by Borell. The delicate nature of the inequality however makes the characterization of the equality cases difficult and they were left unknown. I will explain how we solved this problem. Joint work with Ramon van Handel.

New invariants of homology cobordism

Series
School of Mathematics Colloquium
Time
Thursday, October 31, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kristen HendricksRutgers

This is a talk about 3-manifolds and knots. We will begin by reviewing some basic constructions and motivations in low-dimensional topology, and will then introduce the homology cobordism group, the group of 3-manifolds with the same homology as the 3-dimensional sphere up to a reasonable notion of equivalence. We will discuss what is known about the structure of this group and its connection to higher dimensional topology. We will then discuss some existing invariants of the homology cobordism group coming from gauge theory and symplectic geometry, particularly Floer theory. Finally, we will introduce a new invariant of homology cobordism coming from an equivariant version of the computationally-friendly Floer-theoretic 3-manifold invariant Heegaard Floer homology, and use it to construct a new filtration on the homology cobordism group and derive some structural applications. Parts of this talk are joint work with C. Manolescu and I. Zemke; more recent parts of this talk are joint work with J. Hom and T. Lidman.

Research proposal: Matchings in hypergraphs

Series
Other Talks
Time
Thursday, October 31, 2019 - 13:30 for 30 minutes
Location
Skiles 005
Speaker
Xiaofan YuanGeorgia Tech

I will introduce a minimum l-degree threshold for the existence of a nearly perfect (i.e., covering all but a constant number of vertices) matching in a k-graph where k ≥ 3 and k/2 < l ≤ k − 1. This is joint work with Hongliang Lu and Xingxing Yu.

This improves upon an earlier result of Hàn, Person, and Schacht for the range k/2 < l ≤ k − 1. In some cases, such a matching can in fact be near perfect (i.e., covering all but at most k vertices) and our bound on the minimum l-degree is best possible.

Local limit theorems for combinatorial random variables

Series
Combinatorics Seminar
Time
Friday, November 1, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 249
Speaker
Ross BerkowitzYale University

Let X be the number of length 3 arithmetic progressions in a random subset of Z/101Z.  Does X take the values 630 and 640 with roughly the same probability?
Let Y denote the number of triangles in a random graph on n vertices.  Despite looking similar to X, the local distribution of Y is quite different, as Y obeys a local limit theorem.  
We will talk about a method for distinguishing when combinatorial random variables obey local limit theorems and when they do not.

Renormalization for the almost Mathieu operator and related skew products.

Series
CDSNS Colloquium
Time
Friday, November 1, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hans KochUniv. of Texas, Austin

Considering SL(2,R) skew-product maps over circle rotations,
we prove that a renormalization transformation
associated with the golden mean alpha
has a nontrivial periodic orbit of length 3.
We also present some numerical results,
including evidence that this period 3 describes
scaling properties of the Hofstadter butterfly
near the top of the spectrum at alpha,
and scaling properties of the generalized eigenfunction
for this energy.

Asymptotic normality of the $r\to p$ norm for random matrices with non-negative entries

Series
ACO Student Seminar
Time
Friday, November 1, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Debankur MukherjeeISyE, Georgia Tech

For an $n\times n$ matrix $A_n$, the $r\to p$ operator norm is defined as $\|A_n\|_{r \to p}= \sup_{\|x\|_r\leq 1 } \|A_n x\|_p$ for $r,p\geq 1$. The $r\to p$ operator norm puts a huge number of important quantities of interest in diverse disciplines under a single unified framework. The application of this norm spans a broad spectrum of areas including data-dimensionality reduction in machine learning, finding oblivious routing schemes in transportation network, and matrix condition number estimation.

 

In this talk, we will consider the $r\to p$ norm of a class of symmetric random matrices with nonnegative entries, which includes the adjacency matrices of the Erd\H{o}s-R\'enyi random graphs and matrices with sub-Gaussian entries. For $1< p\leq r< \infty$, we establish the asymptotic normality of the appropriately centered and scaled $\|A_n\|_{r \to p}$, as $n\to\infty$. The special case $r=p=2$, which corresponds to the largest singular value of matrices, was proved in a seminal paper by F\"uredi and Koml\'os (1981). Of independent interest, we further obtain a sharp $\ell_\infty$-approximation for the maximizer vector. The results also hold for sparse matrices and further the $\ell_\infty$-approximation for the maximizer vector also holds for a broad class of deterministic sequence of matrices with certain asymptotic `expansion' properties.

 

This is based on a joint work with Souvik Dhara (MIT) and Kavita Ramanan (Brown U.).

Knot Floer homology

Series
Geometry Topology Seminar Pre-talk
Time
Monday, November 4, 2019 - 12:45 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tom HockenhullUniversity of Glasgow

I’ll try and give some background on the definition of knot Floer homology, and perhaps also bordered Heegaard Floer homology if time permits.

Nonstationary signal analysis and decomposition via Fast Iterative Filtering and Adaptive Local Iterative Filtering techniques. State of the art and open problems

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 4, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Antonio CiconeUniversity of L&#039;Aquila

The analysis and decomposition of nonstationary and nonlinear signals in the quest for the identification
of hidden quasiperiodicities and trends is of high theoretical and applied interest nowadays.

Linear techniques like Fourier and Wavelet Transform, historically used in signal processing, cannot capture
completely nonlinear and non stationary phenomena.

For this reason in the last few years new nonlinear methods have been developed like the groundbreaking
Empirical Mode Decomposition algorithm, aka Hilbert--Huang Transform, and the Iterative Filtering technique.

In this seminar I will give an overview of this kind of methods and I will introduce two new algorithms,
the Fast Iterative Filtering and the Adaptive Local Iterative Filtering. I will review the main theoretical results
and outline the most intriguing open problems that still need to be tackled in the field.
Some examples of applications of these techniques to both artificial and real life signals
will be shown to give a foretaste of their potential and robustness.
 

Koszul duality and Knot Floer homology

Series
Geometry Topology Seminar
Time
Monday, November 4, 2019 - 14:00 for
Location
Skiles 006
Speaker
Tom HockenhullUniversity of Glasgow

‘Koszul duality’ is a phenomenon which algebraists are fond of, and has previously been studied in the context of '(bordered) Heegaard Floer homology' by Lipshitz, Ozsváth and Thurston. In this talk, I shall discuss an occurrence of Koszul duality which links older constructions in Heegaard Floer homology with the bordered Heegaard Floer homology of three-manifolds with torus boundary. I shan’t assume any existing knowledge of Koszul duality or any form of Heegaard Floer homology.

Introduction to the Probabilistic Method

Series
Undergraduate Seminar
Time
Monday, November 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Lutz WarnkeGeorgia Tech

The Probabilistic Method is a powerful tool for tackling many problems in discrete mathematics and related areas.
Roughly speaking, its basic idea can be described as follows. In order to prove existence of a combinatorial structure with certain properties, we construct an appropriate probability space, and show that a randomly chosen element of this space has the desired property with positive probability.
In this talk we shall give a gentle introduction to the Probabilistic Method, with an emphasis on examples.

Tropical curves of hyperelliptic type

Series
Algebra Seminar
Time
Tuesday, November 5, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel CoreyUniversity of Wisconsin

We introduce the notion of tropical curves of hyperelliptic type. These are tropical curves whose Jacobian is isomorphic to that of a hyperelliptic tropical curve, as polarized tropical abelian varieties. Using the tropical Torelli theorem (due to Caporaso and Viviani), this characterization may be phrased in terms of 3-edge connectiviations. We show that being of hyperelliptic type is independent of the edge lengths and is preserved when passing to genus ≥2 connected minors. The main result is an excluded minors characterization of tropical curves of hyperelliptic type.

Quantitative estimates of propagation of chaos for stochastic systems

Series
PDE Seminar
Time
Tuesday, November 5, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pierre-Emmanuel JabinUniversity of Maryland

We study the mean field limit of large stochastic systems of interacting particles. To treat more general and singular kernels, we propose a modulated free energy combination of the method that we had previously developed and of the modulated energy introduced by S. Serfaty. This modulated free energy may be understood as introducing appropriate weights in the relative entropy to cancel the most singular terms involving the divergence of the flow. Our modulated free energy allows to treat singular potentials which combine large smooth part, small attractive singular part and large repulsive singular part. As an example, a full rigorous derivation (with quantitative estimates) of some chemotaxis models, such as Patlak-Keller-Segel system in the subcritical regimes, is obtained. This is a joint work with D. Bresch and Z. Wang.

Rapidly Mixing Random Walks via Log-Concave Polynomials (Part 1)

Series
Joint ACO and ARC Colloquium
Time
Tuesday, November 5, 2019 - 15:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 005
Speaker
Nima AnariStanford University

A fundamental tool used in sampling, counting, and inference problems is the Markov Chain Monte Carlo method, which uses random walks to solve computational problems. The main parameter defining the efficiency of this method is how quickly the random walk mixes (converges to the stationary distribution). The goal of these talks is to introduce a new approach for analyzing the mixing time of random walks on high-dimensional discrete objects. This approach works by directly relating the mixing time to analytic properties of a certain multivariate generating polynomial. As our main application we will analyze basis-exchange random walks on the set of bases of a matroid. We will show that the corresponding multivariate polynomial is log-concave over the positive orthant, and use this property to show three progressively improving mixing time bounds: For a matroid of rank r on a ground set of n elements:

- We will first show a mixing time of O(r^2 log n) by analyzing the spectral gap of the random walk (based on related works on high-dimensional expanders).

- Then we will show a mixing time of O(r log r + r log log n) based on the modified log-sobolev inequality (MLSI), due to Cryan, Guo, Mousa.

- We will then completely remove the dependence on n, and show the tight mixing time of O(r log r), by appealing to variants of well-studied notions in discrete convexity.

Time-permitting, I will discuss further recent developments, including relaxed notions of log-concavity of a polynomial, and applications to further sampling/counting problems.

Based on joint works with Kuikui Liu, Shayan OveisGharan, and Cynthia Vinzant.

Generalized Permutohedra from Probabilistic Graphical Models

Series
Mathematical Biology Seminar
Time
Wednesday, November 6, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Josephine YuGeorgia Tech

A graphical model encodes conditional independence relations among random variables. For an undirected graph these conditional independence relations are represented by a simple polytope known as the graph associahedron, which is a Minkowski sum of standard simplices. We prove that there are analogous polytopes for a much larger class of graphical models.   We construct this polytope as a Minkowski sum of matroid polytopes.  The motivation came from the problem of learning Bayesian networks from observational data.  No background on graphical models will be assumed for the talk.  This is a joint work with Fatemeh Mohammadi, Caroline Uhler, and Charles Wang.

Rapidly Mixing Random Walks via Log-Concave Polynomials (Part 2)

Series
Joint ACO and ARC Colloquium
Time
Wednesday, November 6, 2019 - 12:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 006
Speaker
Nima AnariStanford University

(This is Part 2, continuation of Tuesday's lecture.)

A fundamental tool used in sampling, counting, and inference problems is the Markov Chain Monte Carlo method, which uses random walks to solve computational problems. The main parameter defining the efficiency of this method is how quickly the random walk mixes (converges to the stationary distribution). The goal of these talks is to introduce a new approach for analyzing the mixing time of random walks on high-dimensional discrete objects. This approach works by directly relating the mixing time to analytic properties of a certain multivariate generating polynomial. As our main application we will analyze basis-exchange random walks on the set of bases of a matroid. We will show that the corresponding multivariate polynomial is log-concave over the positive orthant, and use this property to show three progressively improving mixing time bounds: For a matroid of rank r on a ground set of n elements:

- We will first show a mixing time of O(r^2 log n) by analyzing the spectral gap of the random walk (based on related works on high-dimensional expanders).

- Then we will show a mixing time of O(r log r + r log log n) based on the modified log-sobolev inequality (MLSI), due to Cryan, Guo, Mousa.

- We will then completely remove the dependence on n, and show the tight mixing time of O(r log r), by appealing to variants of well-studied notions in discrete convexity.

Time-permitting, I will discuss further recent developments, including relaxed notions of log-concavity of a polynomial, and applications to further sampling/counting problems.

Based on joint works with Kuikui Liu, Shayan OveisGharan, and Cynthia Vinzant.

The 4x4 orthostochastic variety

Series
Research Horizons Seminar
Time
Wednesday, November 6, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Justin ChenGeorgia Tech

A real matrix is called orthostochastic if it is the entrywise square of an orthogonal matrix. These matrices have been shown to be deeply connected to determinantal representations of polynomials, and also arise naturally in physics. However, the equations defining the real variety are known only up to the 3x3 case. I will show how various techniques of numerical algebraic geometry give a way of finding (set-theoretic) defining equations for the 4x4 orthostochastic variety, which are smaller (both in number and degree) than the naive equations one might initially guess. Based on joint work with Papri Dey.

Singular Brascamp-Lieb inequalities

Series
Analysis Seminar
Time
Wednesday, November 6, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Polona DurcikCaltech

Brascamp-Lieb inequalities are estimates for certain multilinear forms on functions on Euclidean spaces. They generalize several classical inequalities, such as Hoelder's inequality or Young's convolution inequality. In this talk we consider singular Brascamp-Lieb inequalities, which arise when one of the functions in the Brascamp-Lieb inequality is replaced by a singular integral kernel. Examples include multilinear singular integral forms such as paraproducts or the multilinear Hilbert transform. We survey some results in the area. 

 

A Study of Knots & Links derived from Doubly Periodic Knitted Fabric Patterns

Series
Geometry Topology Student Seminar
Time
Wednesday, November 6, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shashank MarkandeGeorgia Tech

The emergent shape of a knitted fabric is highly sensitive to the underlying stitch pattern. Here, by a stitch pattern we mean a periodic array of symbols encoding a set of rules or instructions performed to produce a swatch or a piece of fabric. So, it is crucial to understand what exactly these instructions mean in terms of mechanical moves performed using a yarn (a smooth piece of string) and a set of knitting needles (oriented sticks). Motivated by the fact that locally every knitting move results in a slip knot, we use tools from topology to model the set of all doubly periodic stitch patterns, knittable & non-knittable, as knots & links in a three manifold. Specifically, we define a map from the set of doubly-periodic stitch patterns to the set of links in S^3 and use link invariants such as the linking number, multivariable Alexander polynomial etc. to characterize them. We focus on such links derived from knitted stitch patterns in an attempt to tackle the question: whether or not a given stitch pattern can be realized through knitting.

Smoothed analysis of the least singular value without inverse Littlewood--Offord theory

Series
High Dimensional Seminar
Time
Wednesday, November 6, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Speaker
Vishesh JainMIT

We will discuss a novel approach to obtaining non-asymptotic estimates on the lower tail of the least singular value of an $n \times n$ random matrix $M_{n} := M + N_{n}$, where $M$ is a fixed matrix with operator norm at most $O(\exp(n^{c}))$ and $N_n$ is a random matrix, each of whose entries is an independent copy of a random variable with mean 0 and variance 1. This has been previously considered in a series of works by Tao and Vu, and our results improve upon theirs in two ways: 

(i) We are able to deal with $\|M\| = O(\exp(n^{c}))$ whereas previous work was applicable for $\|M\| = O(\poly(n))$. 

(ii) Even for $\|M\| = O(poly(n))$, we are able to extract more refined information – for instance, our results show that for such $M$, the probability that $M_n$ is singular is $O(exp(-n^{c}))$, whereas even in the case when $N_n$ is an i.i.d. Bernoulli matrix, the results of Tao and Vu only give inverse polynomial singularity probability.  

 

The minimal distance of random linear codes

Series
Stochastics Seminar
Time
Thursday, November 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Han HuangGeorgiaTech

When Alice wants to send a k-bits message v to Bob over a noisy channel, she encodes it as a longer n-bits message Mv, where M is a n times k matrix over F_2. The minimal distance d_M of the linear code M is defined as the minimum Hamming distance between Mw and Mu over all distinct points w,u in F_2^k. In this way, if there are less than d_M/2 corrupted bits in the message, Bob can recover the original message via a nearest neighbor search algorithm.

The classical Gilbert-Varshamov Bound provides a lower bound for d_M if the columns of M are independent copies of X, where X is the random vector uniformly distributed on F_2^n. Under the same assumption on M, we show that the distribution of d_M is essentially the same as the minimum of Hamming weight (Hamming distance to origin) of 2^k-1 i.i.d copies of X.

The result is surprising since M is only generated by k independent copies of X. Furthermore, our results also work for arbitrary finite fields.

This is joint work with Jing Hao, Galyna Livshyts, Konstantin Tikhomirov.

Finding cliques in random graphs by adaptive probing

Series
Combinatorics Seminar
Time
Friday, November 8, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Miklos RaczPrinceton University

I will talk about algorithms (with unlimited computational power) which adaptively probe pairs of vertices of a graph to learn the presence or absence of edges and whose goal is to output a large clique. I will focus on the case of the random graph G(n,1/2), in which case the size of the largest clique is roughly 2\log(n). Our main result shows that if the number of pairs queried is linear in n and adaptivity is restricted to finitely many rounds, then the largest clique cannot be found; more precisely, no algorithm can find a clique larger than c\log(n) where c < 2 is an explicit constant. I will also discuss this question in the planted clique model. This is based on joint works with Uriel Feige, David Gamarnik, Joe Neeman, Benjamin Schiffer, and Prasad Tetali. 

Cayley-Bacharach Relations and Sums of Squares

Series
Student Algebraic Geometry Seminar
Time
Monday, November 11, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Kevin ShuGeorgia Tech (grad student)

This talk is based on a paper by Grigoriy Blekherman. In most cases, nonnegative polynomials differ from positive polynomials. We will discuss precisely what equations cause these differences, and relate them to the well known Cayley-Bacharach theorem for low degree polynomials.

Boundary control of optimal mixing via fluid flows

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 11, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Weiwei HuUniversity of Georgia

We discuss the problem of optimal mixing of an inhomogeneous distribution of a scalar field via an active control of the flow velocity, governed by the Stokes or the Navier-Stokes equations, in a two dimensional open bounded and connected domain.  We consider the velocity field steered by a control input that acts tangentially on the boundary of the domain through the  Navier slip boundary conditions. This is motivated by mixing  within a cavity or vessel  by moving the walls or stirring at the boundaries. Our main objective is to design an optimal Navier slip boundary control  that optimizes mixing at a given final time. Non-dissipative scalars, both passive and active, governed by the transport equation will be discussed.  In the absence of diffusion, transport and mixing occur due to pure advection.  This essentially leads to a nonlinear control problem of a semi-dissipative system. We shall provide a rigorous proof of the existence of an optimal controller, derive the first-order necessary conditions for optimality, and present some preliminary results on the numerical implementation.

An inverse problems approach to some questions arising in harmonic analysis

Series
School of Mathematics Colloquium
Time
Tuesday, November 12, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Betsy StovallUniversity of Wisconsin

 One strategy for developing a proof of a claimed theorem is to start by understanding what a counter-example should look like.  In this talk, we will discuss a few recent results in harmonic analysis that utilize a quantitative version of this approach.  A key step is the solution of an inverse problem with the following flavor.  Let $T:X \to Y$ be a bounded linear operator and let $0 < a \leq \|T\|$.  What can we say about those functions $f \in X$ obeying the reverse inequality $\|Tf\|_Y \geq a\|f\|_X$?  

Positively Hyperbolic Varieties

Series
Algebra Seminar
Time
Tuesday, November 12, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

A multivariate complex polynomial is called stable if any line in any positive direction meets its hypersurface only at real points.  Stable polynomials have close relations to matroids and hyperbolic programming.  We will discuss a generalization of stability to algebraic varieties of codimension larger than one.  They are varieties which are hyperbolic with respect to the nonnegative Grassmannian, following the notion of hyperbolicity studied by Shamovich, Vinnikov, Kummer, and Vinzant. We show that their tropicalization and Chow polytopes have nice combinatorial structures related to braid arrangements and positroids, generalizing some results of Choe, Oxley, Sokal, Wagner, and Brändén on Newton polytopes and tropicalizations of stable polynomials. This is based on joint work with Felipe Rincón and Cynthia Vinzant.

Network reconstruction using computational algebra and gene knockouts

Series
Mathematical Biology Seminar
Time
Wednesday, November 13, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Matthew MacauleyClemson University

I will discuss an ongoing project to reconstruct a gene network from time-series data from a mammalian signaling pathway. The data is generated from gene knockouts and the techniques involve computational algebra. Specifically, one creates an pseudomonomial "ideal of non-disposable sets" and applies a analogue of Stanley-Reisner theory and Alexander duality to it. Of course, things never work as well in practice, due to issue such as noise, discretization, and scalability, and so I will discuss some of these challenges and current progress.

Variational models, PDEs, numerical analysis and applications

Series
Research Horizons Seminar
Time
Wednesday, November 13, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sung Ha KangGeorgia Tech

Starting from mathematical approaches for image processing, we will discuss different models, analytic aspects of them, and numerical challenges.  If time permits we will consider numerical applications to data understanding. A few other applications may be presented.

Small deviation estimates for norms of Gaussian vectors

Series
Analysis Seminar
Time
Wednesday, November 13, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Konstantin TikhomirovGeorgia Tech
Let |.| be a norm in R^n, and let G be the standard Gaussian vector.
We are interested in estimating from above the probabilities
P{|G|<(1-t)E|G|} in terms of t. For 1-unconditional norms
in the L-position, we prove small deviation estimates which match those for the
ell-infinity norm: in a sense, among all 1-unconditional norms in the L-position,
the left tail of |G| is the heaviest for ell-infinity. Results for general norms are also obtained.
The proof is based on an application of the hypercontractivity property combined with
certain transformations of the original norm.
Joint work with G.Paouris and P.Valettas.

Hard-core models on triangular and square lattices

Series
High Dimensional Seminar
Time
Wednesday, November 13, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Izabella StuhlPenn State

One of the outstanding open problems of statistical mechanics is about the hard-core model which is a popular topic in mathematical physics and has applications in a number of other disciplines. Namely, do non-overlapping hard disks of the same diameter in the plane admit a unique Gibbs measure at high density? It seems natural to approach this question by requiring the centers to lie in a fine lattice; equivalently, we may fix the lattice, but let the Euclidean diameter D of the hard disks tend to infinity. In two dimensions, it can be a unit triangular lattice A_2 or a unit square lattice Z^2. The randomness is generated by Gibbs/DLR measures with a large value of fugacity which corresponds to a high density. We analyze the structure of high-density hard-core Gibbs measures via the Pirogov-Sinai theory. The first step is to identify periodic ground states, i.e., maximal-density disk configurations which cannot be locally `improved'. A key finding is that only certain `dominant' ground states, which we determine, generate nearby Gibbs measures. Another important ingredient is the Peierls bound separating ground states from other admissible configurations. In particular, number-theoretic properties of the exclusion diameter D turn out to be important. Answers are provided in terms of Eisenstein primes for A_2 and norm equations in the cyclotomic ring Z[ζ] for Z^2, where ζ is the primitive 12th root of unity. Unlike most models in statistical physics, we find non-universality: the number of high-density hard-core Gibbs measures grows indefinitely with D but
non-monotonically. In Z^2 we also analyze the phenomenon of 'sliding' and show it is rare.
This is a joint work with A. Mazel and Y. Suhov.

Zero-free regions and central limit theorems

Series
Stochastics Seminar
Time
Thursday, November 14, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Marcus MichelenUniversity of Illinois, Chicago

Let X be a random variable taking values in {0,...,n} and f(z) be its probability generating function.  Pemantle conjectured that if the variance of X is large and f has no roots close to 1 in the complex plane, then X must be approximately normal. We will discuss a complete resolution of this conjecture in a strong quantitative form, thereby giving the best possible version of a result of Lebowitz, Pittel, Ruelle and Speer. Additionally, if f has no roots with small argument, then X must be approximately normal, again in a sharp quantitative form. These results also imply a multivariate central limit theorem that answers a conjecture and completes a program of Ghosh, Liggett and Pemantle.  This talk is based on joint work with Julian Sahasrabudhe.

Faster Width-dependent Algorithm for Mixed Packing and Covering LPs

Series
ACO Student Seminar
Time
Friday, November 15, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Digvijay BoobISyE, Georgia Tech

In this talk, we provide the details of our faster width-dependent algorithm for mixed packing-covering LPs. Mixed packing-covering LPs are fundamental to combinatorial optimization in computer science and operations research. Our algorithm finds a $1+\eps$ approximate solution in time $O(Nw/ \varepsilon)$, where $N$ is number of nonzero entries in the constraint matrix, and $w$ is the maximum number of nonzeros in any constraint. This algorithm is faster than Nesterov's smoothing algorithm which requires $O(N\sqrt{n}w/ \eps)$ time, where $n$ is the dimension of the problem. Our work utilizes the framework of area convexity introduced in [Sherman-FOCS’17] to obtain the best dependence on $\varepsilon$ while breaking the infamous $\ell_{\infty}$ barrier to eliminate the factor of $\sqrt{n}$. The current best width-independent algorithm for this problem runs in time $O(N/\eps^2)$ [Young-arXiv-14] and hence has worse running time dependence on $\varepsilon$. Many real life instances of mixed packing-covering problems exhibit small width and for such cases, our algorithm can report higher precision results when compared to width-independent algorithms. As a special case of our result, we report a $1+\varepsilon$ approximation algorithm for the densest subgraph problem which runs in time $O(md/ \varepsilon)$, where $m$ is the number of edges in the graph and $d$ is the maximum graph degree.

On a class of sums with unexpectedly high cancellation, and its applications

Series
Combinatorics Seminar
Time
Friday, November 15, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hamed MousaviGeorgia Tech

We report on the discovery of a general principle leading to the unexpected cancellation of oscillating sums. It turns out that sums in the
class we consider are much smaller than would be predicted by certain probabilistic heuristics. After stating the motivation, and our theorem,
we apply it to prove a number of results on integer partitions, the distribution of prime numbers, and the Prouhet-Tarry-Escott Problem. For example, we prove a "Pentagonal Number Theorem for the Primes", which counts the number of primes (with von Mangoldt weight) in a set of intervals very precisely. In fact the result is  stronger than one would get using a strong form of the Prime Number Theorem and also the Riemann Hypothesis (where one naively estimates the \Psi function on each of the intervals; however, a less naive argument can give an improvement), since the widths of the intervals are smaller than \sqrt{x}, making the Riemann Hypothesis estimate "trivial".

Based on joint work with Ernie Croot.

Ergodic properties of low complexity symbolic systems

Series
CDSNS Colloquium
Time
Monday, November 18, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
van.cyr@bucknell.eduBucknell University

The topological entropy of a subshift is the exponential growth rate of the number of words of different lengths in its language. For subshifts of entropy zero, finer growth invariants constrain their dynamical properties. In this talk we will survey how the complexity of a subshift affects properties of the ergodic measures it carries. In particular, we will see some recent results (joint with B. Kra) relating the word complexity of a subshift to its set of ergodic measures as well as some applications.

Higher connectivity of the Bergman fan

Series
Student Algebraic Geometry Seminar
Time
Monday, November 18, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Kisun LeeGeorgia Tech

The Bergman fan is a tropical linear space with trivial valuations describing a matroid combinatorially as it corresponds to a matroid. In this talk, based on a plenty of examples, we study the definition of the Bergman fan and their subdivisions. The talk will be closed with the recent result of the Maclagan-Yu's paper (https://arxiv.org/abs/1908.05988) that the fine subdivision of the Bergman fan of any matroid is r-1 connected where r is the rank of the matroid.

Structure-preserving low multilinear rank approximation of antisymmetric tensors

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 18, 2019 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Erna Begovic KovacGT Math

The talk is concerned with low multilinear rank approximations to antisymmetric tensors, that is, multivariate arrays for which the entries change sign when permuting pairs of indices. Such tensors play a major role in quantum chemistry. We show which ranks can be attained by an antisymmetric tensor and discuss the adaption of existing approximation algorithms to preserve antisymmetry, most notably a Jacobi-type algorithm. Particular attention is paid to the special case when choosing the rank equal to the order of the tensor. It is shown that this case can be addressed with an unstructured rank-1 approximation. This allows for the straightforward application of the higher-order power method, for which we discuss effective initialization strategies. This is a joint work with Daniel Kressner (EPFL).

Joint UGA/Tech Topology Seminar at UGA: Concordance invariants from branched coverings and Heegaard Floer homology

Series
Geometry Topology Seminar
Time
Monday, November 18, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd 221
Speaker
Antonio AlfieriUBC

I will outline the construction of some knot concordance invariants based on the Heegaard Floer homology of double branched coverings. The construction builds on some ideas developed by Hendricks, Manolescu, Hom and Lidman. This is joint work with Andras Stipsicz, and Sungkyung Kang.

Surfaces and their Symmetries

Series
Undergraduate Seminar
Time
Monday, November 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Justin LanierGeorgia Tech

Surfaces are some of the most basic examples of spaces. Although topologists have studied surfaces for a long time, they continue to fascinate. I'll give an overview of the study of surfaces over the past 150 years by highlighting work of seven mathematicians. We'll discuss the classification of surfaces, and we'll also discuss mapping class groups, which are collections of symmetries of surfaces. I'll also give the flavor of four of my own research projects about surfaces, one for each of four broad mathematical areas: group theory, geometry, topology, and dynamics.

Joint UGA/Tech Topology Seminar at UGA: A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds

Series
Geometry Topology Seminar
Time
Monday, November 18, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Boyd 303
Speaker
Marco MarengonUCLA

Building on previous work of Rozansky and Willis, we generalise Rasmussen’s s-invariant to connected sums of $S^1 \times S^2$. Such an invariant can be computed by approximating the Khovanov-Lee complex of a link in $\#^r S^1 \times S^2$ with that of appropriate links in $S^3$. We use the approximation result to compute the s-invariant of a family of links in $S^3$ which seems otherwise inaccessible, and use this computation to deduce an adjunction inequality for null-homologous surfaces in a (punctured) connected sum of $\bar{CP^2}$. This inequality has several consequences: first, the s-invariant of a knot in the three-sphere does not increase under the operation of adding a null-homologous full twist. Second, the s-invariant cannot be used to distinguish $S^4$ from homotopy 4-spheres obtained by Gluck twist on $S^4$. We also prove a connected sum formula for the s-invariant, improving a previous result of Beliakova and Wehrli. We define two s-invariants for links in $\#^r S^1 \times S^2$. One of them gives a lower bound to the slice genus in $\natural^r S^1 \times B^3$ and the other one to the slice genus in $\natural^r D^2 \times S^2$ . Lastly, we give a combinatorial proof of the slice Bennequin inequality in $\#^r S^1 \times S^2$.

Freezing of the optical-branch energy in a diatomic nonlinear chain

Series
Math Physics Seminar
Time
Monday, November 18, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alberto MaiocchiUniversita di Padova

We show that the dynamics of nonlinear dynamical systems with many degrees of freedom (possibly infinitely many) can be similar to that of ordered system in a surprising fashion. To this aim, in the literature one typically uses techniques from perturbation theory, such as KAM theorem or Nekhoroshev theorem. Unfortunately they are known to be ill-suited for obtaining results in the case of many degrees of freedom. We present here a probabilistic approach, in which we focus on some observables of physical interest (obtained by averaging on the probability distribution on initial data) and for several models we get results of stability on long times similar to Nekhoroshev estimates. We present the example of a nonlinear chain of particles with alternating masses, an hyper-simplified model of diatomic solid. In this case, which is similar to the celebrated Fermi-Pasta-Ulam model and is widely studied in the literature, we show the progress with respect to previous results, and in particular how the present approach permits to obtain theorems valid in the thermodynamic limit, as this is of great relevance for physical implications.

Multiscale analysis of sets and measures

Series
Job Candidate Talk
Time
Tuesday, November 19, 2019 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ben JayeClemson University

In this talk I will give an introduction to certain aspects of geometric Littlewood-Paley theory, which is an area of harmonic analysis concerned with deriving regularity properties of sets and measures from the analytic behavior of associated operators. The work we shall describe has been carried out in collaboration with Fedor Nazarov, Maria Carmen Reguera, Xavier Tolsa, and Michele Villa.

Free resolutions of function classes via order complexes

Series
Algebra Seminar
Time
Tuesday, November 19, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Justin ChenGeorgia Institute of Technology

Function classes are collections of Boolean functions on a finite set. Recently, a method of studying function classes via commutative algebra, by associating a squarefree monomial ideal to a function class, was introduced by Yang. I will describe this connection, as well as some free resolutions and Betti numbers for these ideals for an interesting collection of function classes, corresponding to intersection-closed posets. This is joint work with Chris Eur, Greg Yang, and Mengyuan Zhang.

Physical Periodic Ehrenfests' Wind-Tree Model

Series
Dynamical Systems Working Seminar
Time
Tuesday, November 19, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hassan AttarchiGT, School of Math

We consider a physical periodic Ehrenfests' Wind-Tree model where a moving particle is a hard ball rather than (mathematical) point particle. Some dynamics and statistical properties of this model are studied. Moreover, it is shown that it has a new superdiffusive regime where the diffusion coefficient $D(t)\sim(\ln t)^2$ of dynamics seems to be never observed before in any model.

Invariant Gibbs measures and global strong solutions for 2D nonlinear Schrödinger equations

Series
PDE Seminar
Time
Tuesday, November 19, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrea R. NahmodUniversity of Massachusetts Amherst

In this talk I'll first give an background overview of Bourgain's approach to prove the invariance of the Gibbs measure for the periodic cubic nonlinear Schrodinger equation in 2D and of the para-controlled calculus of Gubinelli-Imkeller and Perkowski in the context of parabolic stochastic equations. I will then present our resolution of the long-standing problem of proving almost sure global well-posedness (i.e. existence /with uniqueness/) for the periodic nonlinear Schrödinger equation (NLS) in 2D on the support of the Gibbs measure, for any (defocusing and renormalized) odd power nonlinearity. Consequently we get the invariance of the Gibbs measure. This is achieved by a new method we call /random averaging operators /which precisely captures the intrinsic randomness structure of the problematic high-low frequency interactions at the heart of this problem. This is work with Yu Deng (USC) and Haitian Yue (USC).

Comparing high-dimensional neural distributions with computational geometry and optimal transport 

Series
Mathematical Biology Seminar
Time
Wednesday, November 20, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eva DyerGeorgia Tech (BME &amp; ECE)

In both biological brains and artificial neural networks, the representational geometry - the shape and distribution of activity - at different layers in an artificial network or across different populations of neurons in the brain, can reveal important signatures of the underlying computations taking place. In this talk, I will describe how we are developing strategies for comparing and aligning neural representations, using a combination of tools from computational geometry and optimal transport.

The Shape of Things: Organizing space using algebra

Series
Research Horizons Seminar
Time
Wednesday, November 20, 2019 - 12:20 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Miriam Kuzbary

Determining when two objects have “the same shape” is difficult; this difficulty depends on the dimension we are working in. While many of the same techniques work to study things in dimensions 5 and higher, we can better understand dimensions 1, 2, and 3 using other methods. We can think of 4-dimensional space as the “bridge” between low-dimensional behavior and high-dimensional behavior.

 

One way to understand the possibilities in each dimension is to examine objects called cobordisms: if an (n+1)-dimensional space has an ``edge,” which is called a boundary, then that boundary is itself an n-dimensional space. We say that two n-dimensional spaces are cobordant if together they form the boundary of an (n+1)-dimensional space. Using the idea of spaces related by cobordism, we can form an algebraic structure called a group. In this way, we can attempt to understand higher dimensions using clues from lower dimensions.

 

In this talk, I will discuss different types of cobordism groups and how to study them using tools from a broad range of mathematical areas.

Prime Decomposition of 3-Manifolds

Series
Geometry Topology Student Seminar
Time
Wednesday, November 20, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Thomas RodewaldGeorgia Tech

I will discuss the prime decomposition of three-manifolds. First I will define the connect sum operation, irreducible and prime 3-manifolds. Then using the connect sum operation as "multiplication," I will show any closed oriented three-manifold decomposes uniquely into prime factors using spheres. If time permits, I will show another way of decomposing using discs.

The condition number of square random matrices

Series
High Dimensional Seminar
Time
Wednesday, November 20, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michail SarantisGeorgiaTech

The condition number of a matrix A is the quantity κ(A) = smax(A)/smin(A), where smax(A), smin(A) are the largest and smallest singular values of A, respectively. Let A be a random n × n matrix with i.i.d, mean zero, unit variance, subgaussian entries. We will discuss a result by Litvak, Tikhomirov and Tomczak-Jaegermann which states that, in this setting, the condition number satisfies the small ball probability estimate

P{κ(A) ≤ n/t} ≤ 2 exp(−ct^2), t ≥ 1, where c > 0 is a constant depending only on the subgaussian moment.

A solution to the Burr-Erdos problems on Ramsey completeness

Series
Joint School of Mathematics and ACO Colloquium
Time
Thursday, November 21, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jacob FoxStanford University

A sequence A of positive integers is r-Ramsey complete if for every r-coloring of A, every sufficiently large integer can be written as a sum of the elements of a monochromatic subsequence. Burr and Erdos proposed several open problems in 1985 on how sparse can an r-Ramsey complete sequence be and which polynomial sequences are r-Ramsey complete. Erdos later offered cash prizes for two of these problems. We prove a result which solves the problems of Burr and Erdos on Ramsey complete sequences. The proof uses tools from probability, combinatorics, and number theory. 

Joint work with David Conlon.

A solution to the Burr-Erdos problems on Ramsey completeness

Series
School of Mathematics Colloquium
Time
Thursday, November 21, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jacob FoxStanford University

A sequence A of positive integers is r-Ramsey complete if for every r-coloring of A, every sufficiently large integer can be written as a sum of the elements of a monochromatic subsequence. Burr and Erdos proposed several open problems in 1985 on how sparse can an r-Ramsey complete sequence be and which polynomial sequences are r-Ramsey complete. Erdos later offered cash prizes for two of these problems. We prove a result which solves the problems of Burr and Erdos on Ramsey complete sequences. The proof uses tools from probability, combinatorics, and number theory. 

Joint work with David Conlon.

Fast convergence of fictitious play

Series
ACO Student Seminar
Time
Friday, November 22, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kevin A. LaiCS, Georgia Tech

Fictitious play is one of the simplest and most natural dynamics for two-player zero-sum games. Originally proposed by Brown in 1949, the fictitious play dynamic has each player simultaneously best-respond to the distribution of historical plays of their opponent. In 1951, Robinson showed that fictitious play converges to the Nash Equilibrium, albeit at an exponentially-slow rate, and in 1959, Karlin conjectured that the true convergence rate of fictitious play after k iterations is O(k^{-1/2}), a rate which is achieved by similar algorithms and is consistent with empirical observations. Somewhat surprisingly, Daskalakis and Pan disproved a version of this conjecture in 2014, showing that an exponentially-slow rate can occur, although their result relied on adversarial tie-breaking. In this talk, we show that Karlin’s conjecture holds if ties are broken lexicographically and the game matrix is diagonal. We also show a matching lower bound under this tie-breaking assumption. This is joint work with Jake Abernethy and Andre Wibisono.

Towards the sunflower conjecture

Series
ACO Colloquium
Time
Monday, November 25, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shachar LovettUniversity of California, San Diego, CA

A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all. Erdos and Rado in 1960 proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower. The famous sunflower conjecture is that the bound on the number of sets can be improved to $c^w$ for some constant $c$. Despite much research, the best bounds until recently were all of the order of $w^{cw}$ for some constant c. In this work, we improve the bounds to about $(\log w)^{w}$.

There are two main ideas that underlie our result. The first is a structure vs pseudo-randomness paradigm, a commonly used paradigm in combinatorics. This allows us to either exploit structure in the given family of sets, or otherwise to assume that it is pseudo-random in a certain way. The second is a duality between families of sets and DNFs (Disjunctive Normal Forms). DNFs are widely studied in theoretical computer science. One of the central results about them is the switching lemma, which shows that DNFs simplify under random restriction. We show that when restricted to pseudo-random DNFs, much milder random restrictions are sufficient to simplify their structure.

Joint work with Ryan Alweiss, Kewen Wu and Jiapeng Zhang.

Asymptotic Homotopical Complexity of a Sequence of 2D Dispersing Billiards

Series
CDSNS Colloquium
Time
Monday, November 25, 2019 - 11:15 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
Nandor SimanyiUniversity of Alabama at Birgminham

We are studying the asymptotic homotopical complexity of a sequence of billiard flows on the 2D unit torus T^2 with n
circular obstacles. We get asymptotic lower and upper bounds for the radial sizes of the homotopical rotation sets and,
accordingly, asymptotic lower and upper bounds for the sequence of topological entropies. The obtained bounds are rather
close to each other, so this way we are pretty well capturing the asymptotic homotopical complexity of such systems.

Note that the sequence of topological entropies grows at the order of log(n), whereas, in sharp contrast, the order of magnitude of the sequence of metric entropies is only log(n)/n.


Also, we prove the convexity of the admissible rotation set AR, and the fact that the rotation vectors obtained from
periodic admissible trajectories form a dense subset in AR.

 

Classifying incompressible surfaces in hyperbolic 4-punctured sphere mapping tori

Series
Geometry Topology Seminar
Time
Monday, November 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sunny Yang XiaoBrown University

One often gains insight into the topology of a manifold by studying its sub-manifolds. Some of the most interesting sub-manifolds of a 3-manifold are the "incompressible surfaces", which, intuitively, are the properly embedded surfaces that can not be further simplified while remaining non-trivial. In this talk, I will present some results on classifying orientable incompressible surfaces in a hyperbolic mapping torus whose fibers are 4-punctured spheres. I will explain how such a surface gives rise to a path satisfying certain combinatorial properties in the arc complex of the 4-punctured sphere, and how we can reconstruct such surfaces from these paths. This extends and generalizes results of Floyd, Hatcher, and Thurston.

Thinking Outside the Circle

Series
Undergraduate Seminar
Time
Monday, November 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Dr. Evans HarrellGeorgia Tech

Did you know that a wheel or a ball bearing does not need to be round? Convex regions that can roll smoothly come in many remarkable shapes and have practical applications in engineering and science. Moreover, the mathematics used to describe them, known as convex geometry, is a subject that beautifully ties together analysis and geometry. I'll bring some of these objects along and tell the class how to describe them effectively and recount their interesting history.

The Underlying Contact and Symplectic Topology of Anosov Flows in Dimension 3

Series
Geometry Topology Student Seminar
Time
Wednesday, November 27, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology

Anosov flows provide beautiful examples of interactions between dynamics, geometry and analysis. In dimension 3 in particular, they are known to have a subtle relation to topology as well. Motivated by a result of Mitsumatsu from 1995, I will discuss their relation to contact and symplectic structures and argue why contact topological methods are natural tools to study the related global phenomena.

Residual Torsion-Free Nilpotence and Two-Bridge Knot Groups

Series
Geometry Topology Seminar
Time
Monday, December 2, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
Jonathan JohnsonThe University of Texas at Austin

I will discuss how a graph theoretic construction used by Hirasawa and Murasugi can be used to show that the commutator subgroup of the knot group of a two-bridge knot is a union of an ascending chain of parafree groups. Using a theorem of Baumslag, this implies that the commutator subgroup of a two-bridge knot group is residually torsion-free nilpotent which has applications to the anti-symmetry of ribbon concordance and the bi-orderability of two-bridge knots. In 1973, E. J. Mayland gave a conference talk in which he announced this result. Notes on this talk can be found online. However, this result has never been published, and there is evidence, in later papers, that a proper proof might have eluded Mayland.

Domino Tilings of the Chessboard: An Introduction to Sampling and Counting

Series
Undergraduate Seminar
Time
Monday, December 2, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 171
Speaker
Dana RandallGeorgia Tech

Domino tilings of finite grid regions have been studied in many contexts, revealing rich combinatorial structure.  They arise in applications spanning physics, computer science and probability theory and recreational mathematics.  We will look at questions such as counting and sampling from large combinatorial sets, such as the set of domino tilings, providing a small sample of some of the techniques that are used.  

 

Branched covers and contact 3 manifolds

Series
Geometry Topology Student Seminar
Time
Wednesday, December 4, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech

Branched covers are a generalization of covering spaces, and give rise to interesting questions in smooth as well as contact topology. All 3 manifolds arise as branched coverings of the 3-sphere. The talk will involve a discussion of the proof of this fact due to Montesinos, and will explore the work done towards understanding which contact 3 manifolds arise as the branched cover of the standard tight 3 sphere, and how the branch set can be regulated.

A new proof of the Caffarelli contraction theorem

Series
High Dimensional Seminar
Time
Wednesday, December 4, 2019 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Max FathiMathematics Institute, Toulouse, France

The Caffarelli contraction theorem states that the Brenier map sending the
Gaussian measure onto a uniformly log-concave probability measure is
lipschitz. In this talk, I will present a new proof, using entropic
regularization and a variational characterization of lipschitz transport
maps. Based on joint work with Nathael Gozlan and Maxime Prod'homme.

Inferring computation from structure in neuronal networks

Series
Job Candidate Talk
Time
Thursday, December 5, 2019 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hannah ChoiUniversity of Washington

The complex connectivity structure unique to the brain network is believed to underlie its robust and efficient coding capability. Specifically, neuronal networks at multiple scales utilize their structural complexities to achieve different computational goals. In this talk, I will discuss functional implications that can be inferred from the architecture of brain networks.

The first part of the talk will focus on a generalized problem of linking structure and dynamics of the whole-brain network. By simulating large-scale brain dynamics using a data-driven network of phase oscillators, we show that complexities added to the spatially embedded brain connectome by idiosyncratic long-range connections, enable rapid transitions between local and global synchronizations. In addition to the spatial dependence, I will also discuss hierarchical structure of the brain network. Based on the data-driven layer-specific connectivity patterns, we developed an unsupervised method to find the hierarchical organization of the mouse cortical and thalamic network. The uncovered hierarchy provides insights into the direction of information flow in the mouse brain, which has been less well-defined compared to the primate brain.

Finally, I will discuss computational implications of the hierarchical organization of the brain network. I will focus on a specific type of computation – discrimination of partially occluded objects— carried out by a small cortical circuitry composed of an intermediate visual cortical area V4 and its efferent prefrontal cortex. I will explore how distinct feedforward and feedback signals promote robust encoding of visual stimuli by leveraging predictive coding, a Bayesian inference theory of cortical computation which has been proposed as a method to create efficient neural codes. We implement a predictive coding model of V4 and prefrontal cortex to investigate possible computational roles of feedback signals in the visual system and their potential significance in robust encoding of nosy visual stimuli.

In sum, our results reveal the close link between structural complexity and computational versatility found in brain networks, which may be useful for developing more efficient artificial neural networks and neuromorphic devices.

Geometry and analysis of degenerating Calabi-Yau manifolds

Series
Job Candidate Talk
Time
Thursday, December 5, 2019 - 12:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruobing ZhangSUNY Stony Brook

This talk concerns a naturally occurring family of Calabi-Yau manifolds that degenerates in the sense of metric geometry, algebraic geometry and nonlinear PDE. A primary tool in analyzing their behavior is the recently developed regularity theory. We will give a precise description of arising singularities and explain possible generalizations. 

An isoperimetric inequality for the Hamming cube and some consequences

Series
ACO Seminar
Time
Thursday, December 5, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jinyoung ParkRutgers University

I will introduce an isoperimetric inequality for the Hamming cube and some of its applications. The applications include a “stability” version of Harper’s edge-isoperimetric inequality, which was first proved by Friedgut, Kalai and Naor for half cubes, and later by Ellis for subsets of any size. Our inequality also plays a key role in a recent result on the asymptotic number of maximal independent sets in the cube. 

This is joint work with Jeff Kahn.

Thresholds versus fractional expectation-thresholds

Series
ACO Student Seminar
Time
Friday, December 6, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jinyoung ParkRutgers University

(This is a joint event of ACO Student Seminar and the Combinatorics Seminar Series)

In this talk we will prove a conjecture of Talagrand, which is a fractional version of the “expectation-threshold” conjecture of Kalai and Kahn. This easily implies various difficult results in probabilistic combinatorics, e.g. thresholds for perfect hypergraph matchings (Johansson-Kahn-Vu) and bounded-degree spanning trees (Montgomery). Our approach builds on recent breakthrough work of Alweiss, Lovett, Wu, and Zhang on the Erdős-Rado “Sunflower Conjecture.” 

This is joint work with Keith Frankston, Jeff Kahn, and Bhargav Narayanan.

Thresholds versus fractional expectation-thresholds

Series
Combinatorics Seminar
Time
Friday, December 6, 2019 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jinyoung ParkRutgers University

(This is a joint event of the Combinatorics Seminar Series and the ACO Student Seminar.)

In this talk we will prove a conjecture of Talagrand, which is a fractional version of the “expectation-threshold” conjecture of Kalai and Kahn. This easily implies various difficult results in probabilistic combinatorics, e.g. thresholds for perfect hypergraph matchings (Johansson-Kahn-Vu) and bounded-degree spanning trees (Montgomery). Our approach builds on recent breakthrough work of Alweiss, Lovett, Wu, and Zhang on the Erdos-Rado “Sunflower Conjecture.” 

This is joint work with Keith Frankston, Jeff Kahn, and Bhargav Narayanan.

Ordered groups and n-dimensional dynamics

Series
School of Mathematics Colloquium
Time
Friday, December 6, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dale RolfsenUBC

A group is said to be torsion-free if it has no elements of finite order.  An example is the group, under composition, of self-homeomorphisms (continuous maps with continuous inverses) of the interval I = [0, 1] fixed on the boundary {0, 1}.  In fact this group has the stronger property of being left-orderable, meaning that the elements of the group can be ordered in a way that is nvariant under left-multiplication.  If one restricts to piecewise-linear (PL) homeomorphisms, there exists a two-sided (bi-)ordering, an even stronger property of groups.

I will discuss joint work with Danny Calegari concerning groups of homeomorphisms of the cube [0, 1]^n fixed on the boundary.  In the PL category, this group is left-orderable, but not bi-orderable, for all n>1.  Also I will report on recent work of James Hyde showing that left-orderability fails for n>1 in the topological category.  

Classifying contact structures on hyperbolic 3-manifolds

Series
Geometry Topology Seminar
Time
Monday, December 9, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
James ConwayUC, Berkeley

Note time and place of seminar

Two of the most basic questions in contact topology are which manifolds admit tight contact structures, and on those that do, can we classify such structures. In dimension 3, these questions have been answered for large classes of manifolds, but with a notable absence of hyperbolic manifolds. In this talk, we will see a new classification of contact structures on an family of hyperbolic 3-manifolds arising from Dehn surgery on the figure-eight knot, and see how it suggests some structural results about tight contact structures. This is joint work with Hyunki Min.

Involutive Heegaard Floer homology

Series
Geometry Topology Student Seminar
Time
Wednesday, December 11, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sally CollinsGeorgia Tech

Introduced by Hendricks and Manolescu in 2015, Involutive Heegaard Floer homology is a variation of the 3-manifold invariant Heegaard Floer homology which makes use of the conjugation symmetry of the Heegaard Floer complexes. This theory can be used to obtain two new invariants of homology cobordism. This talk will involve a brief overview of general Heegaard Floer homology, followed by a discussion of the involutive theory and some computations of the homology cobordism invariants.