- You are here:
- GT Home
- Home
- News & Events

Series: Dissertation Defense

For a first order (deterministic) mean-field game with non-local running and initial couplings, a classical solution is constructed for the associated, so-called master equation, a partial differential equation in infinite-dimensional space with a non-local term, assuming the time horizon is sufficiently small and the coefficients are smooth enough, without convexity conditions on the Hamiltonian.

Series: Dissertation Defense

In independent bond percolation with parameter p, if one removes the vertices of the infinite cluster (and incident edges), for which values of p does the remaining graph contain an infinite cluster? Grimmett-Holroyd-Kozma used the triangle condition to show that for d > 18, the set of such p contains values strictly larger than the percolation threshold pc. With the work of Fitzner-van der Hofstad, this has been reduced to d > 10. We reprove this result by showing that for d > 10 and some p>pc, there are infinite paths consisting of "shielded"' vertices --- vertices all whose adjacent edges are closed --- which must be in the complement of the infinite cluster. Using numerical values of pc, this bound can be reduced to d > 7. Our methods are elementary and do not require the triangle condition.

Invasion percolation is a stochastic growth model that follows a greedy algorithm. After assigning i.i.d. uniform random variables (weights) to all edges of d-dimensional space, the growth starts at the origin. At each step, we adjoin to the current cluster the edge of minimal weight from its boundary. In '85, Chayes-Chayes-Newman studied the "acceptance profile"' of the invasion: for a given p in [0,1], it is the ratio of the expected number of invaded edges until time n with weight in [p,p+dp] to the expected number of observed edges (those in the cluster or its boundary) with weight in the same interval. They showed that in all dimensions, the acceptance profile an(p) converges to one for p<pc and to zero for p>pc. In this paper, we consider an(p) at the critical point p=pc in two dimensions and show that it is bounded away from zero and one as n goes to infinity.

Series: Dissertation Defense

Optimal transport is a thoroughly studied field in mathematics and introduces the concept of Wasserstein distance, which has been widely used in various applications in computational mathematics, machine learning as well as many areas in engineering. Meanwhile, control theory and path planning is an active branch in mathematics and robotics, focusing on algorithms that calculates feasible or optimal paths for robotic systems. In this defense, we use the properties of the gradient flows in Wasserstein metric to design algorithms to handle different types of path planning and control problems as well as the K-means problems defined on graphs.

Series: Dissertation Defense

We define the notion of a knot type having Legendrian large cables and

show that having this property implies that the knot type is not uniformly thick.

Moreover, there are solid tori in this knot type that do not thicken to a solid torus

with integer sloped boundary torus, and that exhibit new phenomena; specifically,

they have virtually overtwisted contact structures. We then show that there exists

an infinite family of ribbon knots that have Legendrian large cables. These knots fail

to be uniformly thick in several ways not previously seen. We also give a general

construction of ribbon knots, and show when they give similar such examples.

Series: Dissertation Defense

We are going talk about three topics. First of all, Principal Components Analysis (PCA) as a dimension reduction technique. We investigate how useful it is for real life problems. The problem is that, often times the spectrum of the covariance matrix is wrongly estimated due to the ratio between sample space dimension over feature space dimension not being large enough. We show how to reconstruct the spectrum of the ground truth covariance matrix, given the spectrum of the estimated covariance for multivariate normal vectors. We then present an algorithm for reconstruction the spectrum in the case of sparse matrices related to text classification.

In the second part, we concentrate on schemes of PCA estimators. Consider the problem of finding the least eigenvalue and eigenvector of ground truth covariance matrix, a famous classical estimator are due to Krasulina. We state the convergence proof of Krasulina for the least eigenvalue and corresponding eigenvector, and then find their convergence rate.

In the last part, we consider the application problem, text classification, in the supervised view with traditional Naive-Bayes method. We find out an updated Naive-Bayes method with a new loss function, which loses the unbiased property of traditional Naive-Bayes method, but obtains a smaller variance of the estimator.

Committee: Heinrich Matzinger (Advisor); Karim Lounici (Advisor); Ionel Popescu (school of math); Federico Bonetto (school of math); Xiaoming Huo (school of ISYE);

Series: Dissertation Defense

The length LC_n of the longest common subsequences of two strings X = (X_1, ... , X_n) and Y = (Y_1, ... , Y_n) is a way to measure the similarity between X and Y. We study the asymptotic behavior of LC_n when the two strings are generated by a hidden Markov model (Z, (X, Y)) and we build upon asymptotic results for LC_n obtained for sequences of i.i.d. random variables. Under some standard assumptions regarding the model we first prove convergence results with rates for E[LC_n]. Then, versions of concentration inequalities for the transversal fluctuations of LC_n are obtained. Finally, we outline a proof for a central limit theorem by building upon previous work and adapting a Stein's method estimate.

Series: Dissertation Defense

The Four Color Theorem states that every planar graph is 4-colorable. Hajos conjectured that for any positive integer k, every graph containing no K_{k+1}-subdivision is k-colorable. However, Catlin disproved Hajos' conjecture for k >= 6. It is not hard to prove that the conjecture is true for k <= 3. Hajos' conjecture remains open for k = 4 and k = 5. We consider a minimal counterexample to Hajos' conjecture for k = 4: a graph G, such that G contains no K_5-subdivision, G is not 4-colorable, and |V (G)| is minimum. We use Hajos graph to denote such counterexample. One important step to understand graphs containing K_5-subdivisions is to solve the following problem: let H represent the tree on six vertices, two of which are adjacent and of degree 3. Let G be a graph and u1, u2, a1, a2, a3, a4 be distinct vertices of G. When does G contain a topological H (i.e. an H-subdivision) in which u1, u2 are of degree 3 and a1, a2, a3, a4 are of degree 1? We characterize graphs with no topological H. This characterization is used by He, Wang, and Yu to show that graph containing no K_5-subdivision is planar or has a 4-cut, establishing conjecture of Kelmans and Seymour. Besides the topological H problem, we also obtained some further structural information of Hajos graphs.

Series: Dissertation Defense

We model and analyze the dynamics of religious group membership and size. A groups

is distinguished by its strictness, which determines how much time group members are

expected to spend contributing to the group. Individuals differ in their rate of return for

time spent outside of their religious group. We construct a utility function that individ-

uals attempt to maximize, then find a Nash Equilibrium for religious group participation

with a heterogeneous population. We then model dynamics of group size by including

birth, death, and switching of individuals between groups. Group switching depends on

the strictness preferences of individuals and their probability of encountering members of

other groups. We show that in the case of only two groups one with finite strictness and

the other with zero there is a clear parameter combination that determines whether the

non-zero strictness group can survive over time, which is more difficult at higher strictness

levels. At the same time, we show that a higher than average birthrate can allow even the

highest strictness groups to survive. We also study the dynamics of several groups, gaining

insight into strategic choices of strictness values and displaying the rich behavior of the

model. We then move to the simultaneous-move two-group game where groups can set up

their strictnesses strategically to optimize the goals of the group. Affiliations are assumed

to have three types and each type of group has its own group utility function. Analysis

on the utility functions and Nash equilibria presents different behaviors of various types

of groups. Finally, we numerically simulated the process of new groups entering the reli-

gious marketplace which can be viewed as a sequence of Stackelberg games. Simulation

results show how the different types of religious groups distinguish themselves with regard

to strictness.

Series: Dissertation Defense

The Jacobian of a graph, also known as the sandpile group or the critical group, is a finite group abelian group associated to the graph; it has been independently discovered and studied by researchers from various areas. By the Matrix-Tree Theorem, the cardinality of the Jacobian is equal to the number of spanning trees of a graph. In this dissertation, we study several topics centered on a new family of bijections, named the geometric bijections, between the Jacobian and the set of spanning trees. An important feature of geometric bijections is that they are closely related to polyhedral geometry and the theory of oriented matroids despite their combinatorial description; in particular, they can be generalized to Jacobians of regular matroids, in which many previous works on Jacobians failed to generalize due to the lack of the notion of vertices.

Series: Dissertation Defense

The study of the longest common subsequences (LCSs) of two random words is a classical problem in computer science and bioinformatics. A problem of particular probabilistic interest is to determine the limiting behavior of the expectation and variance of the length of the LCS as the length of the random words grows without bounds. This dissertation studies the problem using both Monte-Carlo simulation and theoretical analysis. The specific problems studied include estimating the growth order of the variance, LCS based hypothesis testing method for sequences similarity, theoretical upper bounds for the Chv\'atal-Sankoff constant of multiple sequences, and theoretical growth order of the variance when the two random words have asymmetric distributions.