Seminars and Colloquia Schedule

d-Pleated surfaces and their coordinates

Series
Geometry Topology Seminar
Time
Monday, December 12, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Giuseppe MartoneYale
Thurston introduced pleated surfaces as a powerful tool to study hyperbolic 3-manifolds. An abstract pleated surface is a representation of the fundamental group of a hyperbolic surface into the Lie group PSL(2,C) of orientation preserving isometries of hyperbolic 3-space together with an equivariant map from the hyperbolic plane into hyperbolic 3-space which satisfies additional properties.
 
In this talk, we introduce a notion of d-pleated surface for representations into PSL(d,C) which is motivated by the theory of Anosov representations. In addition, we give a holomorphic parametrization of the space of d-pleated surfaces via cocyclic pairs, thus generalizing a result of Bonahon.

This talk is based on joint work with Sara Maloni, Filippo Mazzoli and Tengren Zhang.
 

Classical Developments of Compressible Fluid Flow

Series
Job Candidate Talk
Time
Tuesday, December 13, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonardo AbbresciaVanderbilt University

The flow of compressible fluids is governed by the Euler equations, and understanding the dynamics for large times is an outstanding open problem whose full resolution is unlikely to happen in our lifetimes. The main source of difficulty is that any global-in-time theory must incorporate singularities in the PDEs, a fact we have known even in one spatial dimension since Riemann’s 1860 work. In this 1D setting, mathematicians have successfully spent the past 160 years painting a nearly-full picture of fluid dynamics that incorporates singularities.

 

There is a monumental gap in our understanding of compressible fluids in the physical 3D setting compared to the 1D case. This is due in large to the (provable) inaccessibility of the technical PDE tools used in 1D when quantifying the dynamics in 3D. Nevertheless, Christodoulou’s 2007 celebrated breakthrough on shock singularities for the Euler equation has sparked a dramatic wave of results and ideas in multiple space dimensions that have the potential to make the first meaningful dent in the global-in-time theory of compressible fluids. Roughly, shocks are a form of singularity where the fluid solution remains regular but certain first derivatives blow up.

 

In this talk I will discuss the recent culmination of the wave of results initiated by Christodoulou: my work on the maximal classical development (MCD) for compressible fluids, joint with J. Speck. Roughly speaking, the MCD describes the largest region of spacetime where the Euler equations admit a classical solution. For an open set of smooth data, my work reveals the intimate relationship between shock singularity formation and the full structure of the MCD. This fully solves the 162 year old open problem of extending Riemann’s historic 1D result to 3D without symmetry assumptions. In addition to the mathematical contribution, the geo-analytic information of the MCD is precisely the correct “initial data” needed to physically describe the fluid “past” the initial shock singularity in a weak sense. I will also briefly discuss the countless open problems in the field, all of which can be viewed as “building blocks” which will shine the first lights onto the outstanding global-in-time open problem of fluids.

Prediction problems and second order equations

Series
Job Candidate Talk
Time
Thursday, December 15, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 or https://gatech.zoom.us/j/98373229920
Speaker
Ibrahim EkrenFlorida State University

We study the long-time regime of the prediction with expert advice problem in both full information and adversarial bandit feedback setting. We show that with full information, the problem leads to second order parabolic partial differential equations in the Euclidean space. We exhibit solvable cases for this equation and discuss the optimal behavior of both agents. In the adversarial bandit feedback setting, we show that the problem leads to second order parabolic equations in the Wasserstein space which allows us to obtain novel regret bounds. Based on joint works with Erhan Bayraktar and Xin Zhang.