Seminars and Colloquia Schedule

Extension of homeomorphisms and vector fields of the circle: From Anti-de Sitter to Minkowski geometry.

Series
Geometry Topology Seminar
Time
Monday, May 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Farid DiafUniversité Grenoble Alpes

In 1990, Mess gave a proof of Thurston's earthquake theorem using the Anti-de Sitter geometry. Since then, several of Mess's ideas have been used to investigate the correspondence between surfaces in 3-dimensional Anti de Sitter space and Teichmüller theory.

In this spirit, we investigate the problem of the existence of vector fields giving infinitesimal earthquakes on the hyperbolic plane, using the so-called Half-pipe geometry which is the dual of Minkowski geometry in a suitable sense. In particular, we recover Gardiner's theorem, which states that any Zygmund vector field on the circle can be represented as an infinitesimal earthquake. Our findings suggest a connection between vector fields on the hyperbolic plane and surfaces in 3-dimensional Half-pipe space, which may be suggestive of a bigger picture.

 

A deter-mean-istic description of Stochastic Oscillators

Series
CDSNS Colloquium
Time
Friday, May 5, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Alberto Pérez-CerveraUniversidad Complutense de Madrid, Spain

Link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Abstract: The Parameterisation Method is a powerful body of theory to compute the invariant manifolds of a dynamical system by looking for a parameterization of them in such a way that the dynamics on this manifold expressed in the coordinates of such parameterization writes as simply as possible. This methodology was foreseen by Guillamon and Huguet [SIADS, 2009 & J. Math. Neurosci, 2013] as a possible way of extending the domain of accuracy of the phase-reduction of periodic orbits. This fruitful approach, known as phase-amplitude reduction, has been fully developed during the last decade and provides an essentially complete understanding of deterministic oscillatory dynamics.
In this talk, we pursue the "simpler as possible" philosophy underlying the Parameterisation Method to develop an analogous phase-amplitude approach to stochastic oscillators. Main idea of our approach is to find a change of variables such that the system, when transformed to these variables, expresses in the mean as the deterministic phase-amplitude description. Then, we take advantage of the simplicity of this approach, to develop interesting objects with the aim of further clarifying the stochastic oscillation.