Seminars and Colloquia Schedule

Non-positive Stein-fillable open books of genus one

Series
Geometry Topology Seminar
Time
Monday, August 21, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vitalijs BrejevsUniversity of Vienna

Contact 3-manifolds arise organically as boundaries of symplectic 4-manifolds, so it’s natural to ask: Given a contact 3-manifold Y, does there exist a symplectic 4-manifold X filling Y in a compatible way? Stein fillability is one such notion of compatibility that can be explored via open books: representations of a 3-manifold by means of a surface with boundary and its self-diffeomorphism, called a monodromy. I will discuss joint work with Andy Wand in which we exhibit first known Stein-fillable contact manifolds whose supporting open books of genus one have non-positive monodromies. This settles the question of correspondence between Stein fillings and positive monodromies for open books of all genera. Our methods rely on a combination of results of J. Conway, Lecuona and Lisca, and some observations about lantern relations in the mapping class group of the twice-punctured torus.

An Introduction to Teichmüller Theory

Series
Geometry Topology Student Seminar
Time
Wednesday, August 23, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex NolteRice University

Say you’ve got an (orientable) surface S and you want to do geometry with it. Well, the complex plane C has dimension 2, so you might as well try to model S on C and see what happens. The objects you get from following this thought are called complex structures. It turns out that most surfaces have a rich but manageable amount of genuinely different complex structures. I’ll focus in this talk on how to think about comparing and deforming complex structures on S. I’ll explain the remarkable result that there are highly structured “best” maps between (marked) complex structures, and how this can be used to show the right space of complex structures on S is a finite-dimensional ball. This is known as Teichmüller’s theorem, and I’ll be following Bers’ proof.