Seminars and Colloquia Schedule

Geometric Structures for the G_2’ Hitchin Component

Series
Geometry Topology Seminar
Time
Monday, January 8, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Parker EvansRice University

Abstract: Fundamental to our understanding of Teichm\"uller space T(S) of a closed oriented genus $g \geq 2$ surface S are two different perspectives: one as connected  component in the  PSL(2,\R) character variety  \chi(\pi_1S, PSL(2,\R)) and one as the moduli space of marked hyperbolic structures on S. The latter can be thought of as a moduli space of (PSL(2,\R), \H^2) -structures. The G-Hitchin component, denoted Hit(S,G), for G a split real simple Lie group, is a connected component in \chi(\pi_1S, G) that is a higher rank generalization of T(S). In this talk, we discuss a new geometric structures (i.e., (G,X)-structures) interpretation of Hit(S, G_2'), where G_2' is the split real form of the exceptional complex simple Lie group G_2.


After discussing the motivation and background, we will present some of the main ideas of the theorem, including a family of almost-complex curves
that serve as bridge between the geometric structures and representations.

Metric geometric aspects of Einstein manifolds

Series
Job Candidate Talk
Time
Wednesday, January 10, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005, https://gatech.zoom.us/j/95551591205
Speaker
Ruobing ZhangPrinceton University

This lecture concerns the metric Riemannian geometry of Einstein manifolds, which is a central theme in modern differential geometry and is deeply connected to a large variety of fundamental problems in algebraic geometry, geometric topology, analysis of nonlinear PDEs, and mathematical physics. We will exhibit the rich geometric/topological structures of Einstein manifolds and specifically focus on the structure theory of moduli spaces of Einstein metrics. My recent works center around the intriguing problems regarding the compactification of the moduli space of Einstein metrics, which tells us how Einstein manifolds can degenerate. Such problems constitute the most challenging part in the metric geometry of Einstein manifolds. We will introduce recent major progress in the field. If time permits, I will propose several important open questions.

Krylov Subspace Methods and Matrix Functions: new directions in design, analysis, and applications

Series
Job Candidate Talk
Time
Thursday, January 11, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tyler ChenNYU

Krylov subspace methods (KSMs) are among the most widely used algorithms for a number of core linear algebra tasks. However, despite their ubiquity throughout the computational sciences, there are many open questions regarding the remarkable convergence of commonly used KSMs. Moreover, there is still potential for the development of new methods, particularly through the incorporation of randomness as an algorithmic tool. This talk will survey some recent work on the analysis of the well-known Lanczos method for matrix functions and the design of new KSMs for low-rank approximation of matrix functions and approximating partial traces and reduced density matrices. 

 

Point counting over finite fields and the cohomology of moduli spaces of curves

Series
Job Candidate Talk
Time
Thursday, January 11, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sam PayneUT Austin

Algebraic geometry studies solution sets of polynomial equations. For instance, over the complex numbers, one may examine the topology of the solution set, whereas over a finite field, one may count its points. For polynomials with integer coefficients, these two fundamental invariants are intimately related via cohomological comparison theorems and trace formulas for the action of Frobenius. I will discuss the general framework relating point counting over finite fields to topology of complex algebraic varieties and also present recent applications to the cohomology of moduli spaces of curves that resolve longstanding questions in algebraic geometry and confirm more recent predictions from the Langlands program.