Counting cliques in graphs with excluded minors
- Series
- Dissertation Defense
- Time
- Tuesday, July 1, 2025 - 10:00 for 1.5 hours (actually 80 minutes)
- Location
- Skiles 006
- Speaker
- Ruilin Shi – Georgia Institute of Technology – rshi49@gatech.edu
This thesis explores Turán-type extremal problems in graphs that exclude certain minors, focusing on the maximum number of $k$-cliques such graphs can contain. The first part of the thesis studies planar graphs, which forbid $K_5$ and $K_{3,3}$ as minors. We determine the maximum number of edges is in a planar graph that contains no cycle of length k, and establish a general upper bound for the number of edges in a planar graph avoiding $C_k$ for any $k\ge 11$.
The second part addresses the maximum number of $k$-cliques in $K_t$-minor-free graphs. We show essentially sharp bounds on the maximum possible number of cliques of order $k$ in a $K_t$-minor-free graph on $n$ vertices. More precisely, we determine a function $C(k, t)$ such that for each $k < t$ with $t - k \gg \log_2 t$, every $K_t$-minor-free graph on $n$ vertices has at most $n \cdot C(k, t)^{1 + o_t(1)}$ cliques of order $k$. We also show that this bound is sharp by constructing a $K_t$-minor-free graph on $n$ vertices with $C(k, t) n$ cliques of order $k$. This result answers a question of Wood and Fox–Wei asymptotically up to an $o_t(1)$ factor in the exponent, except in the extreme case where $k$ is very close to $t$.