Seminars and Colloquia by Series

Equilibrium states for star flows and the spectral decomposition conjecture

Series
CDSNS Colloquium
Time
Friday, February 28, 2025 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Fan YangWake Forest University

In this talk, we will discuss recent progress in the theory of smooth star flows that contain singularities and consider their expansiveness, continuity of the topological pressure, and the existence and uniqueness of equilibrium states. We will prove an ergodic version of the Spectral Decomposition Conjecture: $C^1$ open and densely, every singular star flow has only finitely many ergodic measures of maximal entropy, and only finitely many ergodic equilibrium states for Holder continuous potentials satisfying a mild yet optimal condition. Joint with M.J. Pacifico and J. Yang.

The Allen-Cahn equation with weakly critical initial datum

Series
CDSNS Colloquium
Time
Friday, February 7, 2025 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Tommaso RosatiU Warwick

Please Note: Zoom link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Motivated by question in the dynamics of phase fields, we study the Allen-Cahn equation in dimension 2 with white noise initial datum. We prove the appearance of a universal initial condition for mean curvature flow in a small noise scaling. We also obtain a weak coupling limit when the noise is not tuned down: the effective variance that appears can be described as the solution to an ODE. I will discuss ongoing applications in the perturbative study of other critical SPDEs. Joint works with Simon Gabriel, Martin Hairer, Khoa Lê and Nikos Zygouras.

Upper bounds in Quantum Dynamics via Discrepancy Estimates

Series
CDSNS Colloquium
Time
Friday, January 31, 2025 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Matthew PowellGeorgia Tech

Please Note: Zoom link: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

 

Since the mid-to-late 70s, a variety of authors turned their attention to understanding the localization behavior of evolution of discrete ergodic Schr\”odinger operators. This study included the notions of Anderson localization as well as more nuanced properties of the Schr\”odinger semi-group (so-called quantum dynamics). A remarkable result of the work on the latter, due to Y. Last [1996], is that the quantum dynamics is tied to the fractal structure of the operator’s spectral measures. This has been used as a suggestive indicator of certain long-time behavior of the quantum dynamics in the absence of localization.

In the early 2000s, D. Damanik, S. Techeremchantsev, and others linked the long-time behavior of the quantum dynamics to properties of the Green's function of the semi-group generator, which is in turn closely related to the base dynamical system.

In this talk, we will discuss the notion of discrepancy and how it is related to ideal properties of the Green's function. In the process, we will present current and ongoing work establishing novel upper bounds for the discrepancy for skew-shift sequences. As an application of our bounds, we improve the quantum dynamical bounds in Han-Jitomirskaya [2019], Jitomirskaya-Powell [2022], Shamis-Sodin [2023], and Liu [2023] for long-range Schr\”odinger operators with skew-shift base dynamics.

On the Three-Dimensional, Quadratic Diffeomorphism: Anti-integrability, Attractors, and Chaos

Series
CDSNS Colloquium
Time
Friday, January 24, 2025 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Amanda HamptonGeorgia Tech

Please Note: Zoom link (if needed): https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

 

We give a comprehensive parameter study of the three-dimensional quadratic diffeomorphism to understand its attracting and chaotic dynamics. For large parameter values, we use a concept introduced 30 years ago for the Frenkel--Kontorova model of condensed matter physics: the anti-integrable (AI) limit. At the traditional AI limit, orbits of a map degenerate to sequences of symbols and the dynamics is reduced to the shift operator, a pure form of chaos. For the 3D quadratic map, the AI limit that we study becomes a pair of one-dimensional maps, introducing symbolic dynamics on two symbols. Using contraction arguments, we find parameter domains such that each symbol sequence corresponds to a unique AI state. In some of these domains, sufficient conditions are then found for each such AI state to continue away from the limit becoming an orbit of the original 3D map. Numerical continuation methods extend these results, allowing computation of bifurcations, and allowing us to obtain orbits with horseshoe-like structures and intriguing self-similarity.

For small parameter values, we focus on the dissipative, orientation preserving case to study the codimension-one and two bifurcations. Periodic orbits, born at resonant, Neimark-Sacker bifurcations, give rise to Arnold tongues in parameter space. Aperiodic attractors include invariant circles and chaotic orbits; these are distinguished by rotation number and Lyapunov exponents. Chaotic orbits include Hénon-like and Lorenz-like attractors, which can arise from period-doubling cascades, and those born from the destruction of invariant circles. The latter lie on paraboloids near the local unstable manifold of a fixed point.

Lastly, we present a generalized proof for the existence of AI states using similar contraction arguments to find larger parameter domains for the one-to-one correspondence of symbol sequences and AI states. We apply numerical continuation to these results to determine the persistence of low-period and heteroclinic AI states to the full, deterministic 3D map for a volume-contracting case. We find the corresponding AI state of a chaotic attractor and continue this state towards the full map. The numerical results show that the AI states continue to resonant and chaotic attractors along a 3D folded horseshoe that is similar to the classical 2D Hénon attractor.

Rigidity of Anosov flows in dimension 3

Series
CDSNS Colloquium
Time
Friday, January 17, 2025 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Andrey GogolevOhio State University

We will discuss some surprising rigidity phenomena for Anosov flows in dimension 3. For example, in the context of generic transitive 3-dimensional Anosov flows, any continuous conjugacy is either smooth or reverses the positive and negative SRB measures.

This is joint work with Martin Leguil and Federico Rodriguez Hertz

Absolute continuity of stationary measures-UPDATED DATE

Series
CDSNS Colloquium
Time
Friday, December 6, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Davi ObataBrigham Young University

In this talk, we will study random dynamical systems of smooth surface diffeomorphisms. Aaron Brown and Federico Rodriguez Hertz showed that, in this setting, hyperbolic stationary measures have the SRB property, except when certain obstructions occur. Here, the SRB property essentially means that the measure is absolutely continuous along certain “nice” curves (unstable manifolds). In this talk, we want to understand conditions that guarantee that SRB stationary measures are absolutely continuous with respect to the Lebesgue measure of the ambient space. Our approach is inspired on Tsujii’s “transversality” method, which he used to show Palis conjecture for partially hyperbolic endomorphisms. This is a joint work with Aaron Brown, Homin Lee and Yuping Ruan.

Non-escape of mass for QUE in hyperbolic 4-manifolds

Series
CDSNS Colloquium
Time
Friday, November 22, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Alexandre Perozim de FaveriStanford University

The arithmetic quantum unique ergodicity (AQUE) conjecture predicts that the L^2 mass of Hecke-Maass cusp forms on an arithmetic hyperbolic manifold becomes equidistributed as the Laplace eigenvalue grows. If the underlying manifold is non-compact, mass could “escape to infinity”. This possibility was ruled out by Soundararajan for arithmetic surfaces, which when combined with celebrated work of Lindenstrauss completed the proof of AQUE for surfaces.

We establish non-escape of mass for Hecke-Maass cusp forms on a congruence quotient of hyperbolic 4-space. Unlike in the setting of hyperbolic 2- or 3-manifolds (for which AQUE has been proved), the number of terms in the Hecke relations is unbounded, which prevents us from naively applying Cauchy-Schwarz. We instead view the isometry group as a group of quaternionic matrices, and rely on non-commutative unique factorization, along with certain structural features of the Hecke action. Joint work with Zvi Shem-Tov.

 

Multidimensional local limit theorem in deterministic systems and an application to non-convergence of polynomial multiple averages - NOTE IRREGULAR TIME/DATE

Series
CDSNS Colloquium
Time
Thursday, November 21, 2024 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Shrey SanadhyaHebrew University

In this talk, for an ergodic probability preserving system $(X,\mathcal{B},m,T)$, we will discuss the existence of a function $f:X\to \mathbb{Z}^d$, whose corresponding cocycle satisfies the $d$-dimensional local central limit theorem.
As an application, we resolve a question of Huang, Shao and Ye, and Franzikinakis and Host regarding non-convergence in $L^2$ of polynomial multiple averages of non-commuting zero entropy transformations. If time allows, we will also discuss the first examples of failure of multiple recurrence for zero entropy transformations along polynomial iterates. This is joint work with Zemer Kosloff (arXiv:2409.05087). 

Some open problems concerning the dynamics of Earth’s ice sheets

Series
CDSNS Colloquium
Time
Friday, November 8, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Alex RobelGeorgia Tech

Ice sheets are fascinating dynamical systems that flow, fracture and melt on a wide range of time scales, presenting a range of challenging prediction problems with important implications for how coastal communities plan for sea level rise. In this talk, I will introduce a few outstanding problems concerning the evolution of Earth’s ice sheets under climate change. I will start by introduce the classical theory of “marine ice sheet instability” which describes how glacier ice flows from the land to ice which floats on the ocean, and leads to a saddle-node bifurcation in ice sheet size under climate change. Many contemporary predictions of ice sheet change hold that such a bifurcation is currently unfolding at a number of glaciers in Greenland and Antarctica and could lead to runaway ice sheet retreat even if global temperatures stop increasing in the future. I discuss our recent work on whether this bifurcation may actually play out as a sliding-crossing bifurcation, and the role of a stochastic climate system in driving the system through this bifurcation where nonlinearities cause evolution of the leading order moments of the distribution of glacier state.

Projections and sumsets of self-affine fractals

Series
CDSNS Colloquium
Time
Friday, November 1, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Cagri SertWarwick University

I will discuss some results from our ongoing work with Ian D. Morris which aims at a systematic study of projections of self-affine fractals.
After explaining the extension of classical results of Falconer to the projections of self-affine fractals, I will discuss:

  • the existence of equilibrium states having non-exact dimensional linear projections (equilibrium states themselves are exact dimensional by Feng);
  • the existence of self-affine fractals in dimensions at least 4, whose set of exceptional projections in the sense of Marstand Projection Theorem contains higher degree algebraic varieties in Grassmannians (such constructions are not possible even in Borel category in dimension 3 by the solution of a conjecture of Fassler-Orponen by Gan et.al., neither in any dimension if the linear parts of affinities acts strongly irreducibly on all exterior powers, by Barany, Hochman, Rapaport);
  • the existence of self-affine fractals whose sumsets have lower than expected dimension without satisfying an arithmetic resonance (impossible in dimension 1 by Hochman, Shmerkin, Peres and in dimension 2 by Pyorala).

Pages