Seminars and Colloquia by Series

Free multiplicative cascades and Wigner's semicircle law

Series
Stochastics Seminar
Time
Thursday, February 8, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ian McKeagueColumbia University
It has been conjectured that phenomena as diverse as the behavior of large "self-organizing" neural networks, and causality in standard model particle physics, can be explained by suitably rich algebras acting on themselves. In this talk I discuss the asymptotics of large causal tree diagrams that combine freely independent elements of such algebras. The Marchenko-Pastur law and Wigner's semicircle law are shown to emerge as limits of a normalized sum-over-paths of non-negative elements assigned to the edges of causal trees. The results are established in the setting of non-commutative probability. Trees with classically independent positive edge weights (random multiplicative cascades) were originally proposed by Mandelbrot as a model displaying the fractal features of turbulence. The novelty of the present work is the use of non-commutative (free) probability to allow the edge weights to take values in an algebra.

Delay-Optimal Scheduling for Data Center Networks and Input-Queued Switches in Heavy Traffic

Series
Stochastics Seminar
Time
Thursday, January 25, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Siva MaguluriGeorgia Insitute of Technology
Today's era of cloud computing is powered by massive data centers. A data center network enables the exchange of data in the form of packets among the servers within these data centers. Given the size of today's data centers, it is desirable to design low-complexity scheduling algorithms which result in a fixed average packet delay, independent of the size of the data center. We consider the scheduling problem in an input-queued switch, which is a good abstraction for a data center network. In particular, we study the queue length (equivalently, delay) behavior under the so-called MaxWeight scheduling algorithm, which has low computational complexity. Under various traffic patterns, we show that the algorithm achieves optimal scaling of the heavy-traffic scaled queue length with respect to the size of the switch. This settles one version of an open conjecture that has been a central question in the area of stochastic networks. We obtain this result by using a Lyapunov-type drift technique to characterize the heavy-traffic behavior of the expected total queue length in the network, in steady-state.

Parking

Series
Stochastics Seminar
Time
Thursday, November 30, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Matthew JungeDuke University
Cars are placed with density p on the lattice. The remaining vertices are parking spots that can fit one car. Cars then drive around at random until finding a parking spot. We study the effect of p on the availability of parking spots and observe some intriguing behavior at criticality. Joint work with Michael Damron, Janko Gravner, Hanbeck Lyu, and David Sivakoff. arXiv id: 1710.10529.

Choices and Intervals (joint with Combinatorics Seminar)

Series
Stochastics Seminar
Time
Thursday, November 9, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Elliot Paquette The Ohio State University
We study an online algorithm for making a well—equidistributed random set of points in an interval, in the spirit of "power of choice" methods. Suppose finitely many distinct points are placed on an interval in any arbitrary configuration. This configuration of points subdivides the circle into a finite number of intervals. At each time step, two points are sampled uniformly from the interval. Each of these points lands within some pair of intervals formed by the previous configuration. Add the point that falls in the larger interval to the existing configuration of points, discard the other, and then repeat this process. We then study this point configuration in the sense of its largest interval, and discuss other "power of choice" type modifications. Joint work with Pascal Maillard.

Energy landscapes of mean field spin glasses

Series
Stochastics Seminar
Time
Thursday, November 2, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Wei-Kuo ChenUniversity of Minnesota
The Sherrington-Kirkpatirck (SK) model is a mean-field spin glass introduced by theoretical physicists in order to explain the strange behavior of certain alloys, such as CuMn. Despite of its seemingly simple formulation, it was conjectured to possess a number of profound properties. This talk will be focused on the energy landscapes of the SK model and the mixed p-spin model with both Ising and spherical configuration spaces. We will present Parisi formule for their maximal energies followed by descriptions of the energy landscapes near the maximum energy. Based on joint works with A. Auffinger, M. Handschy, G. Lerman, and A. Sen.

Optimal block bootstrap estimation for nonsmooth functionals for weakly dependent sequences

Series
Stochastics Seminar
Time
Thursday, October 26, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Todd KuffnerWashington University in St. Louis
When considering smooth functionals of dependent data, block bootstrap methods have enjoyed considerable success in theory and application. For nonsmooth functionals of dependent data, such as sample quantiles, the theory is less well-developed. In this talk, I will present a general theory of consistency and optimality, in terms of achieving the fastest convergence rate, for block bootstrap distribution estimation for sample quantiles under mild strong mixing assumptions. The case of density estimation will also be discussed. In contrast to existing results, we study the block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the subsampling bootstrap and the moving block bootstrap (MBB). Examples of `time series’ models illustrate the benefits of optimally choosing the number of blocks. This is joint work with Stephen M.S. Lee (University of Hong Kong) and Alastair Young (Imperial College London).

Sequential low-rank matrix completion and estimation: Uncertainty quantification and design

Series
Stochastics Seminar
Time
Thursday, October 19, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yao XieISyE, Georgia Institute of Technology
We present a unified framework for sequential low-rank matrix completion and estimation, address the joint goals of uncertainty quantification (UQ) and statistical design. The first goal of UQ aims to provide a measure of uncertainty of estimated entries in the unknown low-rank matrix X, while the second goal of statistical design provides an informed sampling or measurement scheme for observing the entries in X. For UQ, we adopt a Bayesian approach and assume a singular matrix-variate Gaussian prior the low-rank matrix X which enjoys conjugacy. For design, we explore deterministic design from information-theoretic coding theory. The effectiveness of our proposed methodology is then illustrated on applications to collaborative filtering.

Partitioning sparse random graphs: connections with mean-field spin glasses

Series
Stochastics Seminar
Time
Thursday, October 5, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Subhabrata SenMIT / Microsoft
The study of graph-partition problems such as Maxcut, max-bisection and min-bisection have a long and rich history in combinatorics and theoretical computer science. A recent line of work studies these problems on sparse random graphs, via a connection with mean field spin glasses. In this talk, we will look at this general direction, and derive sharp comparison inequalities between cut-sizes on sparse Erdös-Rényi and random regular graphs. Based on joint work with Aukosh Jagannath.

Optimal prediction in the linearly transformed spiked model

Series
Stochastics Seminar
Time
Thursday, September 21, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Edgar DobribanUniversity of Pennsylvania, Wharton School
We consider the $\textit{linearly transformed spiked model}$, where observations $Y_i$ are noisy linear transforms of unobserved signals of interest $X_i$: $$Y_i = A_i X_i + \varepsilon_i,$$ for $i=1,\ldots,n$. The transform matrices $A_i$ are also observed. We model $X_i$ as random vectors lying on an unknown low-dimensional space. How should we predict the unobserved signals (regression coefficients) $X_i$? The naive approach of performing regression for each observation separately is inaccurate due to the large noise. Instead, we develop optimal linear empirical Bayes methods for predicting $X_i$ by "borrowing strength'' across the different samples. Our methods are applicable to large datasets and rely on weak moment assumptions. The analysis is based on random matrix theory. We discuss applications to signal processing, deconvolution, cryo-electron microscopy, and missing data in the high-noise regime. For missing data, we show in simulations that our methods are faster, more robust to noise and to unequal sampling than well-known matrix completion methods. This is joint work with William Leeb and Amit Singer from Princeton, available as a preprint at arxiv.org/abs/1709.03393.

Spectral analysis in bipartite biregular graphs and community detection

Series
Stochastics Seminar
Time
Thursday, September 14, 2017 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gerandy BritoGeorgia Institute of Technology
This talk concerns to spectral gap of random regular graphs. First, we prove that almost all bipartite biregular graphs are almost Ramanujan by providing a tight upper bound for the non trivial eigenvalues of its adjacency operator, proving Alon's Conjecture for this family of graphs. Also, we use a spectral algorithm to recover hidden communities in a random network model we call regular stochastic block model. Our proofs rely on a technique introduced recently by Massoullie, which we developed for random regular graphs.

Pages