Seminars and Colloquia by Series

Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations

Series
Job Candidate Talk
Time
Tuesday, January 14, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Jacob BedrossianCourant Institute, NYU
We prove asymptotic stability of shear flows close to the planar, periodic Couette flow in the 2D incompressible Euler equations.That is, given an initial perturbation of the Couette flow small in a suitable regularity class, specifically Gevrey space of class smaller than 2, the velocity converges strongly in L2 to a shear flow which is also close to the Couette flow. The vorticity is asymptotically mixed to small scales by an almost linear evolution and in general enstrophy is lost in the weak limit. Joint work with Nader Masmoudi. The strong convergence of the velocity field is sometimes referred to as inviscid damping, due to the relationship with Landau damping in the Vlasov equations. Recent work with Nader Masmoudi and Clement Mouhot on Landau damping may also be discussed.

The local to global principle for rational points

Series
Job Candidate Talk
Time
Thursday, January 9, 2014 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bianca VirayBrown University
Let X be a connected smooth projective variety over Q. If X has a Q point, then X must have local points, i.e. points over the reals and over the p-adic completions Q_p. However, local solubility is often not sufficient. Manin showed that quadratic reciprocity together with higher reciprocity laws can obstruct the existence of a Q point (a global point) even when there exist local points. We will give an overview of this obstruction (in the case of quadratic reciprocity) and then show that for certain surfaces, this reciprocity obstruction can be viewed in a geometric manner. More precisely, we will show that for degree 4 del Pezzo surfaces, Manin's obstruction to the existence of a rational point is equivalent to the surface being fibered into genus 1 curves, each of which fail to be locally solvable.

Intertwinings, wave equations and growth models

Series
Job Candidate Talk
Time
Tuesday, January 7, 2014 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Mykhaylo ShkolnikovBerkeley Univ
We will discuss a general theory of intertwined diffusion processes of any dimension. Intertwined processes arise in many different contexts in probability theory, most notably in the study of random matrices, random polymers and path decompositions of Brownian motion. Recently, they turned out to be also closely related to hyperbolic partial differential equations, symmetric polynomials and the corresponding random growth models. The talk will be devoted to these recent developments which also shed new light on some beautiful old examples of intertwinings. Based on joint works with Vadim Gorin and Soumik Pal.

Global regularity for water waves in two dimensions

Series
Job Candidate Talk
Time
Thursday, December 12, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fabio PusateriPrinceton University
We will start by describing some general features of quasilinear dispersive and wave equations. In particular we will discuss a few important aspects related to the question of global regularity for such equations. We will then consider the water waves system for the evolution of a perfect fluid with a free boundary. In 2 spatial dimensions, under the influence of gravity, we prove the existence of global irrotational solutions for suitably small and regular initial data. We also prove that the asymptotic behavior of solutions as time goes to infinity is different from linear, unlike the 3 dimensional case.

Localization and delocalization in the Anderson model on random regular graphs

Series
Job Candidate Talk
Time
Tuesday, December 10, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leander GeisingerPrinceton University
The Anderson model on a discrete graph is given by the graph Laplacian perturbed by a random potential. I study spectral properties of this random Schroedinger operator on a random regular graph of fixed degree in the limit where the number of vertices tends to infinity.The choice of model is motivated by its relation to two important and well-studied models of random operators: On the one hand there are similarities to random matrices, for instance to Wigner matrices, whose spectra are known to obey universal laws. On the other hand a random Schroedinger operator on a random regular graph is expected to approximate the Anderson model on the homogeneous tree, a model where both localization (characterized by pure point spectrum) and delocalization (characterized by absolutely continuous spectrum) was established.I will show that the Anderson model on a random regular graph also exhibits distinct spectral regimes of localization and of delocalization. One regime is characterized by exponential decay of eigenvectors. In this regime I analyze the local eigenvalue statistics and prove that the point process generated by the eigenvalues of the random operator converges in distribution to a Poisson process.In contrast to that I will also show that the model exhibits a spectral regime of delocalization where eigenvectors are not exponentially localized.

Out-of-equilibrium dynamics for the nonlinear Schroedinger equation: From energy cascades to weak turbulence

Series
Job Candidate Talk
Time
Thursday, December 5, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zaher HaniCourant Institute, New York University
Out-of-equilibrium dynamics are a characteristic feature of the long-time behavior of nonlinear dispersive equations on bounded domains. This is partly due to the fact that dispersion does not translate into decay in this setting (in contrast to the case of unbounded domains like $R^d$). In this talk, we will take the cubic nonlinear Schroedinger equation as our model, and discuss some aspects of its out-of-equilibrium dynamics, from energy cascades (i.e. migration of energy from low to high frequencies) to weak turbulence.

Geometric Discrepancy Via the Entropy Method

Series
Job Candidate Talk
Time
Tuesday, December 3, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Esther EzraCourant Institute, NYU
Discrepancy theory, also referred to as the theory of irregularities of distribution, has been developed into a diverse and fascinating field, with numerous closely related areas, including, numerical integration, Ramsey theory, graph theory, geometry, and theoretical computer science, to name a few. Informally, given a set system S defined over an n-item set X, the combinatorial discrepancy is the minimum, over all two-colorings of X, of the largest deviation from an even split, over all sets in S. Since the celebrated ``six standard deviations suffice'' paper of Spencer in 1985, several long standing open problems in the theory of combinatorial discrepancy have been resolved, including tight discrepancy bounds for halfspaces in d-dimensions [Matousek 1995] and arithmetic progressions [Matousek and Spencer 1996]. In this talk, I will present new discrepancy bounds for set systems of bounded ``primal shatter dimension'', with the property that these bounds are sensitive to the actual set sizes. These bounds are nearly-optimal. Such set systems are abstract, but they can be realized by simply-shaped regions, as halfspaces, balls, and octants in d-dimensions, to name a few. Our analysis exploits the so-called "entropy method" and the technique of "partial coloring", combined with the existence of small "packings".

Recent advances in First Passage Percolation

Series
Job Candidate Talk
Time
Tuesday, November 26, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skyles 005
Speaker
Antonio AuffingerUniversity of Chicago
First-passage percolation is a model of a random metric on a infinite network. It deals with a collection of points which can be reached within a given time from a fixed starting point, when the network of roads is given, but the passage times of the road are random. It was introduced back in the 60's but most of its fundamental questions are still open. In this talk, we will overview some recent advances in this model focusing on the existence, fluctuation and geometry of its geodesics. Based on joint works with M. Damron and J. Hanson.

Combinatorics and complexity of Kronecker coefficients

Series
Job Candidate Talk
Time
Tuesday, November 19, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greta PanovaUCLA
Kronecker coefficients lie at the intersection of representation theory, algebraic combinatorics and, most recently, complexity theory. They count the multiplicities of irreducible representations in the tensor product of two other irreducible representations of the symmetric group. While their study was initiated almost 75 years, remarkably little is known about them. One of the major problems of algebraic combinatorics is to find an explicit positive combinatorial formula for these coefficients. Recently, this problem found a new meaning in the field of Geometric Complexity Theory, initiated by Mulmuley and Sohoni, where certain conjectures on the complexity of computing and deciding positivity of Kronecker coefficients are part of a program to prove the "P vs NP" problem. In this talk we will give an overview of this topic and we will describe several problems with some results on different aspects of the Kronecker coefficients. We will explore Saxl conjecture stating that the tensor square of certain irreducible representation of S_n contains every irreducible representation, and present a criterion for determining when a Kronecker coefficient is nonzero. In a more combinatorial direction, we will show how to prove certain unimodality results using Kronecker coefficients, including the classical Sylvester's theorem on the unimodality of q-binomial coefficients (as polynomials in q). We will also present some results on complexity in light of Mulmuley's conjectures. The presented results are based on joint work with Igor Pak and Ernesto Vallejo.

Semidefinite method in extremal graph theory

Series
Job Candidate Talk
Time
Thursday, March 28, 2013 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sergey NorinMcGill University
Many fundamental theorems in extremal graph theory can be expressed as linear inequalities between homomorphism densities. Lovasz and, in a slightly different formulation, Razborov asked whether it is true that every such inequality follows from a finite number of applications of the Cauchy-Schwarz inequality. In this talk we will show that the answer to this question is negative. Further, we will show that the problem of determining the validity of a linear inequality between homomorphism densities is undecidable. Hence such inequalities are inherently difficult in their full generality. These results are joint work with Hamed Hatami. On the other hand, the Cauchy-Schwarz inequality (a.k.a. the semidefinite method) represents a powerful tool for obtaining _particular_ results in asymptotic extremal graph theory. Razborov's flag algebras provide a formalization of this method and have been used in over twenty papers in the last four years. We will describe an application of flag algebras to Turan’s brickyard problem: the problem of determining the crossing number of the complete bipartite graph K_{m,n}. This result is based joint work with Yori Zwols.

Pages