Seminars and Colloquia by Series

New Conjectures for Union-Closed Families

Series
Combinatorics Seminar
Time
Tuesday, April 19, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Annie RaymondUniversity of Washington, Seattle, WA
The Frankl union-closed sets conjecture states that there exists an element present in at least half of the sets forming a union-closed family. We reformulate the conjecture as an optimization problem and present an integer program to model it. The computations done with this program lead to a new conjecture: we claim that the maximum number of sets in a non-empty union-closed family in which each element is present at most a times is independent of the number n of elements spanned by the sets if n is greater or equal to log_2(a)+1. We prove that this is true when n is greater or equal to a. We also discuss the impact that this new conjecture would have on the Frankl conjecture if it turns out to be true. This is joint work with Jonad Pulaj and Dirk Theis.

Long range order in random three-colorings of Z^d

Series
Combinatorics Seminar
Time
Friday, April 15, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ohad Noy FeldheimStanford University

Please Note: Joint work with Yinon Spinka.

Consider a random coloring of a bounded domain in the bipartite graph Z^d with the probability of each color configuration proportional to exp(-beta*N(F)), where beta>0, and N(F) is the number of nearest neighboring pairs colored by the same color. This model of random colorings biased towards being proper, is the antiferromagnetic 3-state Potts model from statistical physics, used to describe magnetic interactions in a spin system. The Kotecky conjecture is that in such a model with d >= 3, Fixing the boundary of a large even domain to take the color $0$ and high enough beta, a sampled coloring would typically exhibits long-range order. In particular a single color occupies most of either the even or odd vertices of the domain. This is in contrast with the situation for small beta, when each bipartition class is equally occupied by the three colors. We give the first rigorous proof of the conjecture for large d. Our result extends previous works of Peled and of Galvin, Kahn, Randall and Sorkin, who treated the zero beta=infinity case, where the coloring is chosen uniformly for all proper three-colorings. In the talk we shell give a glimpse into the combinatorial methods used to tackle the problem. These rely on structural properties of odd-boundary subsets of Z^d. No background in statistical physics will be assumed and all terms will be thoroughly explained.

Asymptotics for the Length of the Longest Common Subsequences

Series
Combinatorics Seminar
Time
Friday, April 1, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Christian HoudréGeorgia Tech
Both for random words or random permutations, I will present a panoramic view of results on the (asymptotic) behavior of the length of the longest common subsequences . Starting with, now, classical results on expectations dating back to the nineteen-seventies I will move to recent results obtained by Ümit Islak and myself giving the asymptotic laws of this length and as such answering a decades-old well know question.

Matroids over hyperfields

Series
Combinatorics Seminar
Time
Friday, March 11, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matt BakerSchool of Mathematics, Georgia Tech
We present an algebraic framework which simultaneously generalizes the notion of linear subspaces, matroids, valuated matroids, and oriented matroids. We call the resulting objects matroids over hyperfields. We give "cryptomorphic" axiom systems for such matroids in terms of circuits, Grassmann-Plucker functions, and dual pairs, and establish some basic duality theorems.

On the product of differences of sets in finite fields

Series
Combinatorics Seminar
Time
Friday, January 22, 2016 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Georgios PetridisUniversity of Rochester
We show that there exists an absolute constant c>0 with the following property. Let A be a set in a finite field with q elements. If |A|>q^{2/3-c}, then the set (A-A)(A-A) consisting of products of pairwise differences of elements of A contains at least q/2 elements. It appears that this is the first instance in the literature where such a conclusion is reached for such type sum-product-in-finite-fileds questions for sets of smaller cardinality than q^{2/3}. Similar questions have been investigated by Hart-Iosevich-Solymosi and Balog.

The Kelmans-Seymour conjecture

Series
Combinatorics Seminar
Time
Wednesday, January 20, 2016 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yan WangMath, GT
Seymour and, independently, Kelmans conjectured in the 1970s that every 5-connected nonplanar graph contains a subdivision of $K_5$. This conjecture was proved by Ma and Yu for graphs containing $K_4^-$. Recently, we proved this entire Kelmans-Seymour conjecture. In this talk, I will give a sketch of our proof, and discuss related problems. This is joint work with Dawei He and Xingxing Yu.

On the Beck-Fiala Conjecture for Random Set Systems

Series
Combinatorics Seminar
Time
Friday, December 4, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Esther EzraGeorgia Tech

Please Note: Joint work with Shachar Lovett.

Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set systems. Concretely, these are set systems (X,\Sigma), where each element x \in X lies in t randomly selected sets of \Sigma, where t \le |X| is an integer parameter. We provide new discrepancy bounds in this case. Specifically, we show that when |\Sigma| \ge |X| the hereditary discrepancy of (X,\Sigma) is with high probability O(\sqrt{t \log t}), matching the Beck-Fiala conjecture upto a \sqrt{\log{t}} factor. Our analysis combines the Lov{\'a}sz Local Lemma with a new argument based on partial matchings.

Counting Single Cut-or-Join Scenarios

Series
Combinatorics Seminar
Time
Friday, November 20, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Heather SmithGeorgia Tech
Represent a genome with an edge-labelled, directed graph having maximum total degree two. We explore a number of questions regarding genome rearrangement, a common mode of molecular evolution. In the single cut-or-join model for genome rearrangement, a genome can mutate in one of two ways at any given time: a cut divides a degree two vertex into two degree one vertices while a join merges two degree one vertices into one degree two vertex. Fix a set of genomes, each having the same set of edge labels. The number of ways for one genome to mutate into another can be computed in polynomial time. The number of medians can also be computed in polynomial time. While single cut-or-join is, computationally, the simplest mathematical model for genome rearrangement, determining the number of most parsimonious median scenarios remains #P-complete. We will discuss these and other complexity results that arose from an abstraction of this problem. [This is joint work with Istvan Miklos.]

Multivariate Analytic Combinatorics: Functions with Algebraic Singularities

Series
Combinatorics Seminar
Time
Friday, October 9, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Torin GreenwoodGeorgia Tech
Flajolet and Odlyzko (1990) derived asymptotic formulae for the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new multivariate analytic techniques and used them to analyze the coefficients of rational generating functions. In this talk, we discuss these multivariate analytic techniques and use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. We will also look at how to apply such formulae to practical problems.

Pages