Seminars and Colloquia by Series

Combinatorial problems of block transpositions in symmetric groups

Series
Combinatorics Seminar
Time
Tuesday, May 19, 2015 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Annachiara KorchmarosUniversity of Basilicata
In the study of combinatorial aspects of symmetric groups, a major problem arising from applications to Genetics consists in finding a minimum factorization of any permutation with factors from a given generating set. The difficulty in developing an adequate theory as well as the hardness of the computational complexity may heavily vary depending on the generator set. In this talk, the generating set consists of all block transpositions introduced by Bafna and Pevzner in 1998 for the study of a particular ''genome rearrangement problem''. Results, open problems, and generalizations are discussed in terms of Cayley graphs and their automorphism groups.

Arithmetic Combinatorics and Character Sums

Series
Combinatorics Seminar
Time
Tuesday, April 21, 2015 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Brandon HansonUniversity of Toronto
Characters are a central tool for understanding arithmetic. For example, the most familiar character is the Legendre symbol, which detects the quadratic residues. In this talk I will present a few ideas as to how character sums may be useful in arithmetic combinatorics and vice versa. Traditionally, estimates for character sums have been used to count arithmetic configurations of interest to the combinatorialist. More recently, arithmetic combinatorics has proved useful in the estimation of certain character sums. Many character sums are easy to estimate provided they have enough summands - this is sometimes called the square-root barrier and is a natural obstruction. I will show how the sum-product phenomenon can be leveraged to push past this barrier.

Geometric Bijections Between Spanning Trees and Break Divisors

Series
Combinatorics Seminar
Time
Tuesday, April 7, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chi Ho YuenGeorgia Tech
The Jacobian group Jac(G) of a finite graph G is a group whose cardinality is the number of spanning trees of G. G also has a tropical Jacobian which has the structure of a real torus; using the notion of break divisors, one can obtain a polyhedral decomposition of the tropical Jacobian where vertices and cells correspond to the elements of Jac(G) and the spanning trees of G respectively. In this talk I will give a combinatorial description to bijections coming from this geometric setting, I will also show some previously known bijections can be related to these geometric bijections. This is joint work with Matthew Baker.

Proof of the middle levels conjecture

Series
Combinatorics Seminar
Time
Tuesday, March 31, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Torsten MuetzeETH (Zurich) and Georgia Tech
Define the middle layer graph as the graph whose vertex set consists of all bitstrings of length 2n+1 that have exactly n or n+1 entries equal to 1, with an edge between any two vertices for which the corresponding bitstrings differ in exactly one bit. The middle levels conjecture asserts that this graph has a Hamilton cycle for every n>=1. This conjecture originated probably with Havel, Buck and Wiedemann, but has also been (mis)attributed to Dejter, Erdos, Trotter and various others, and despite considerable efforts it remained open during the last 30 years. In this talk I present a proof of the middle levels conjecture. In fact, I show that the middle layer graph has 2^{2^{\Omega(n)}} different Hamilton cycles, which is best possible. http://www.openproblemgarden.org/op/middle_levels_problem and http://www.math.uiuc.edu/~west/openp/revolving.html

The structure of space curve arrangements with many incidences

Series
Combinatorics Seminar
Time
Tuesday, March 10, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joshua ZahlMIT
In 2010, Guth and Katz proved that if a collection of N lines in R^3 contained more than N^{3/2} 2-rich points, then many of these lines must lie on planes or reguli. I will discuss some generalizations of this result to space curves in three dimensional vector spaces. This is joint work with Larry Guth.

Two combinatorial applications of smooth numbers

Series
Combinatorics Seminar
Time
Wednesday, February 18, 2015 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nathan McNewDartmouth College
We look at two combinatorial problems which can be solvedusing careful estimates for the distribution of smooth numbers. Thefirst is the Ramsey-theoretic problem to determine the maximal size ofa subset of of integers containing no 3-term geometric progressions.This problem was first considered by Rankin, who constructed such asubset with density about 0.719. By considering progressions among thesmooth numbers, we demonstrate a method to effectively compute thegreatest possible upper density of a geometric-progression-free set.Second, we consider the problem of determining which prime numberoccurs most frequently as the largest prime divisor on the interval[2,x], as well as the set prime numbers which ever have this propertyfor some value of x, a problem closely related to the analysis offactoring algorithms.

Graph Fourientations and the Tutte Polynomial

Series
Combinatorics Seminar
Time
Monday, February 16, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Spencer BackmanUniversity of Rome
A fourientation of a graph is a choice for each edge of whether to orient it in either direction, bidirect it, or leave it unoriented. I will present joint work with Sam Hopkins where we describe classes of fourientations defined by properties of cuts and cycles whose cardinalities are given by generalized Tutte polynomial evaluations of the form: (k+l)^{n-1}(k+m)^g T (\frac{\alpha k + \beta l +m}{k+l}, \frac{\gamma k +l + \delta m}{k+m}) for \alpha,\gamma \in {0,1,2} and \beta, \delta \in {0,1}. We also investigate classes of 4-edge colorings defined via generalized notions of internal and external activity, and we show that their enumerations agree with those of the fourientation classes. We put forth the problem of finding a bijection between fourientations and 4-edge-colorings which respects all of the given classes. Our work unifies and extends earlier results for fourientations due to myself, Gessel and Sagan, and Hopkins and Perkinson, as well as classical results for full orientations due to Stanley, Las Vergnas, Greene and Zaslavsky, Gioan, Bernardi and others.

Two combinatorial applications of smooth numbers

Series
Combinatorics Seminar
Time
Tuesday, February 10, 2015 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nathan McNewDartmouth College
We look at two combinatorial problems which can be solvedusing careful estimates for the distribution of smooth numbers. Thefirst is the Ramsey-theoretic problem to determine the maximal size ofa subset of of integers containing no 3-term geometric progressions.This problem was first considered by Rankin, who constructed such asubset with density about 0.719. By considering progressions among thesmooth numbers, we demonstrate a method to effectively compute thegreatest possible upper density of a geometric-progression-free set.Second, we consider the problem of determining which prime numberoccurs most frequently as the largest prime divisor on the interval[2,x], as well as the set prime numbers which ever have this propertyfor some value of x, a problem closely related to the analysis offactoring algorithms.

Two combinatorial applications of smooth numbers

Series
Combinatorics Seminar
Time
Tuesday, February 3, 2015 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nathan McNewDartmouth College
We look at two combinatorial problems which can be solvedusing careful estimates for the distribution of smooth numbers. Thefirst is the Ramsey-theoretic problem to determine the maximal size ofa subset of of integers containing no 3-term geometric progressions.This problem was first considered by Rankin, who constructed such asubset with density about 0.719. By considering progressions among thesmooth numbers, we demonstrate a method to effectively compute thegreatest possible upper density of a geometric-progression-free set.Second, we consider the problem of determining which prime numberoccurs most frequently as the largest prime divisor on the interval[2,x], as well as the set prime numbers which ever have this propertyfor some value of x, a problem closely related to the analysis offactoring algorithms.

Likelihood Orders for Random Walks on Groups

Series
Combinatorics Seminar
Time
Tuesday, January 27, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Megan BernsteinStanford University
When studying the mixing of random walks on groups, information about the relative likelihoods of the elements under the walk can serve to help understand the mixing and reveal some internal structure. Starting with some elementary arguments of Diaconis and Isaacs and moving into arguments using representation theory of the symmetric group, I'll demonstrate some total and partial orders on finite groups that describe the relative likeliness under random walks. No prior knowledge is assumed.

Pages