### TBA

- Series
- Combinatorics Seminar
- Time
- Friday, December 6, 2019 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Jinyoung Park – Rutgers University

TBA

- You are here:
- GT Home
- Home
- News & Events

- Series
- Combinatorics Seminar
- Time
- Friday, December 6, 2019 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Jinyoung Park – Rutgers University

TBA

- Series
- Combinatorics Seminar
- Time
- Friday, December 6, 2019 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Jinyoung Park – Rutgers University

In this talk we will prove a conjecture of Talagrand, which is a fractional version of the “expectation-threshold” conjecture of Kalai and Kahn. This easily implies various difficult results in probabilistic combinatorics, e.g. thresholds for perfect hypergraph matchings (Johansson-Kahn-Vu) and bounded-degree spanning trees (Montgomery). Our approach builds on recent breakthrough work of Alweiss, Lovett, Wu, and Zhang on the Erdős-Rado “Sunflower Conjecture.”

This is joint work with Keith Frankston, Jeff Kahn, and Bhargav Narayanan.

- Series
- Combinatorics Seminar
- Time
- Friday, November 15, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Hamed Mousavi – Georgia Tech

We report on the discovery of a general principle leading to the unexpected cancellation of oscillating sums. It turns out that sums in the

class we consider are much smaller than would be predicted by certain probabilistic heuristics. After stating the motivation, and our theorem,

we apply it to prove a number of results on integer partitions, the distribution of prime numbers, and the Prouhet-Tarry-Escott Problem. For example, we prove a "Pentagonal Number Theorem for the Primes", which counts the number of primes (with von Mangoldt weight) in a set of intervals very precisely. In fact the result is stronger than one would get using a strong form of the Prime Number Theorem and also the Riemann Hypothesis (where one naively estimates the \Psi function on each of the intervals; however, a less naive argument can give an improvement), since the widths of the intervals are smaller than \sqrt{x}, making the Riemann Hypothesis estimate "trivial".

Based on joint work with Ernie Croot.

- Series
- Combinatorics Seminar
- Time
- Friday, November 8, 2019 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Miklos Racz – Princeton University

I will talk about algorithms (with unlimited computational power) which adaptively probe pairs of vertices of a graph to learn the presence or absence of edges and whose goal is to output a large clique. I will focus on the case of the random graph G(n,1/2), in which case the size of the largest clique is roughly 2\log(n). Our main result shows that if the number of pairs queried is linear in n and adaptivity is restricted to finitely many rounds, then the largest clique cannot be found; more precisely, no algorithm can find a clique larger than c\log(n) where c < 2 is an explicit constant. I will also discuss this question in the planted clique model. This is based on joint works with Uriel Feige, David Gamarnik, Joe Neeman, Benjamin Schiffer, and Prasad Tetali.

- Series
- Combinatorics Seminar
- Time
- Friday, November 1, 2019 - 11:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 249
- Speaker
- Ross Berkowitz – Yale University

Let X be the number of length 3 arithmetic progressions in a random subset of Z/101Z. Does X take the values 630 and 640 with roughly the same probability?

Let Y denote the number of triangles in a random graph on n vertices. Despite looking similar to X, the local distribution of Y is quite different, as Y obeys a local limit theorem.

We will talk about a method for distinguishing when combinatorial random variables obey local limit theorems and when they do not.

- Series
- Combinatorics Seminar
- Time
- Friday, October 18, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Ricky Liu – North Carolina State University – riliu@ncsu.edu

We will describe a twisted action of the symmetric group on the polynomial ring in n variables and use it to define a twisted version of Schubert polynomials. These twisted Schubert polynomials are known to be related to the Chern-Schwartz-MacPherson classes of Schubert cells in the flag variety. Using properties of skew divided difference operators, we will show that these twisted Schubert polynomials are monomial positive and give a combinatorial formula for their coefficients.

- Series
- Combinatorics Seminar
- Time
- Friday, March 29, 2019 - 15:05 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Yinon Spinka – University of British Columbia, Vancouver, Canada

Consider a uniformly chosen proper coloring with q colors of a domain in Z^d (a graph homomorphism to a clique). We show that when the dimension is much higher than the number of colors, the model admits a staggered long-range order, in which one bipartite class of the domain is predominantly colored by half of the q colors and the other bipartite class by the other half. In the q=3 case, this was previously shown by Galvin-Kahn-Randall-Sorkin and independently by Peled. The result further extends to homomorphisms to other graphs (covering for instance the cases of the hard-core model and the Widom-Rowlinson model), allowing also vertex and edge weights (positive temperature models). Joint work with Ron Peled.

- Series
- Combinatorics Seminar
- Time
- Friday, February 15, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Hamed Amini – Georgia State University

We provide a framework for testing the possibility of large cascades in random networks. Our results extend previous studies on contagion in random graphs to inhomogeneous directed graphs with a given degree sequence and arbitrary distribution of weights. This allows us to study systemic risk in financial networks, where we introduce a criterion for the resilience of a large network to the failure (insolvency) of a small group of institutions and quantify how contagion amplifies small shocks to the network.

- Series
- Combinatorics Seminar
- Time
- Friday, February 8, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Andrzej Rucinski – Emory and AMU Poznań

Abstract: Reiher, Rödl, Ruciński, Schacht, and Szemerédi proved, via a modification of the absorbing method, that every 3-uniform $n$-vertex hypergraph, $n$ large, with minimum vertex degree at least $(5/9+\alpha)n^2/2$ contains a tight Hamiltonian cycle. Recently, owing to a further modification of the method, the same group of authors joined by Bjarne Schuelke, extended this result to 4-uniform hypergraphs with minimum pair degree at least, again, $(5/9+\alpha)n^2/2$. In my talk I will outline these proofs and point to the crucial ideas behind both modifications of the absorbing method.

- Series
- Combinatorics Seminar
- Time
- Friday, January 25, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Fan Wei – Stanford University

The importance of analyzing big data and in particular very large networks has shown that the traditional notion of a fast algorithm, one that runs in polynomial time, is often insufficient. This is where property testing comes in, whose goal is to very quickly distinguish between objects that satisfy a certain property from those that are ε-far from satisfying that property. It turns out to be closely related to major developments in combinatorics, number theory, discrete geometry, and theoretical computer science. Some of the most general results in this area give "constant query complexity" algorithms, which means the amount of information it looks at is independent of the input size. These results are proved using regularity lemmas or graph limits. Unfortunately, typically the proofs come with no explicit bound for the query complexity, or enormous bounds, of tower-type or worse, as a function of 1/ε, making them impractical. We show by entirely new methods that for permutations, such general results still hold with query complexity only polynomial in 1/ε. We also prove stronger results for graphs through the study of new metrics. These are joint works with Jacob Fox.

- Offices & Departments
- News Center
- Campus Calendar
- Special Events
- GreenBuzz
- Institute Communications
- Visitor Resources
- Campus Visits
- Directions to Campus
- Visitor Parking Information
- GTvisitor Wireless Network Information
- Georgia Tech Global Learning Center
- Georgia Tech Hotel & Conference Center
- Barnes & Noble at Georgia Tech
- Ferst Center for the Arts
- Robert C. Williams Paper Museum