Seminars and Colloquia by Series

Hydrodynamic limit of vortices in Ginzburg-Landau theory

Series
PDE Seminar
Time
Tuesday, September 30, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel SpirnUniversity of Minnesota
Vortices arise in many problems in condensed matter physics, including superconductivity, superfluids, and Bose-Einstein condensates. I will discuss some results on the behavior of two of these systems when there are asymptotically large numbers of vortices. The methods involve suitable renormalization of the energies both at the vortex cores and at infinity, along with a renormalization of the vortex density function.

Existence of strong solutions to Compressible Navier-Stokes equations with degenerate viscosities and vacuum

Series
PDE Seminar
Time
Tuesday, September 9, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shengguo ZhuGeorgia Tech
We identify sufficient conditions on initial data to ensure the existence of a unique strong solution to the Cauchy problem for the Compressible Navier-Stokes equations with degenerate viscosities and vacuum (such as viscous Saint-Venants model in $\mathbb{R}^2$). This is a recent work joint with Yachun Li and Ronghua Pan.

Well posedness and decay for full Navier Stokes equations with temperature dependent coefficient

Series
PDE Seminar
Time
Tuesday, August 26, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Junxiong JiaGeorgia Tech
In this talk, firstly, we study the local and global well-posedness for full Navier-Stokes equations with temperature dependent coefficients in the framework of Besov space. We generalized R. Danchin's results for constant transport coefficients to obtain the local and global well-posedness for the initial with low regularity in Besov space framework. Secondly, we give a time decay rate results of the global solution in the Besov space framework which is not investigated before. Due to the low regularity assumption, we find that the high frequency part is also important for us to get the time decay.

Nonlinear, nondispersive surface waves

Series
PDE Seminar
Time
Tuesday, April 22, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skile 006
Speaker
John HunterUniversity California, Davis
Surface waves are waves that propagate along a boundary or interface, with energy that is localized near the surface. Physical examples are water waves on the free surface of a fluid, Rayleigh waves on an elastic half-space, and surface plasmon polaritons (SPPs) on a metal-dielectric interface. We will describe some of the history of surface waves and explain a general Hamiltonian framework for their analysis. The weakly nonlinear evolution of dispersive surface waves is described by well-known PDEs like the KdV or nonlinear Schrodinger equations. The nonlinear evolution of nondispersive surface waves, such as Rayleigh waves or quasi-static SPPs, is described by nonlocal, quasi-linear, singular integro-differential equations, and we will discuss some of the properties of these waves, including the formation of singularities on the boundary.

Infinite energy cascades and modified scattering for the cubic Schr\"odinger on product spaces

Series
PDE Seminar
Time
Thursday, April 17, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zaher HaniNew York University
We consider the cubic nonlinear Schr\"odinger equation posed on the product spaces \R\times \T^d. We prove the existence of global solutions exhibiting infinite growth of high Sobolev norms. This is a manifestation of the "direct energy cascade" phenomenon, in which the energy of the system escapes from low frequency concentration zones to arbitrarily high frequency ones (small scales). One main ingredient in the proof is a precise description of the asymptotic dynamics of the cubic NLS equation when 1\leq d \leq 4. More precisely, we prove modified scattering to the resonant dynamics in the following sense: Solutions to the cubic NLS equation converge (as time goes to infinity) to solutions of the corresponding resonant system (aka first Birkhoff normal form). This is joint work with Benoit Pausader (Princeton), Nikolay Tzvetkov (Cergy-Pontoise), and Nicola Visciglia (Pisa).

HYPERBOLIC SYSTEMS OF BALANCE LAWS WITH DISSIPATION

Series
PDE Seminar
Time
Tuesday, April 15, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Constantine DafermosBrown University
ABSTRACT: The lecture will outline a research program which aims at establishing the existence and long time behavior of BV solutions for hyperbolic systems of balance laws, in one space dimension, with partially dissipative source, manifesting relaxation. Systems with such structure are ubiquitous in classical physics.

Mixed type problems in transonic flow and isometric embedding

Series
PDE Seminar
Time
Tuesday, March 11, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dehua WangUniversity of Pittsburgh
Some mixed-type PDE problems for transonic flow and isometric embedding will be discussed. Recent results on the solutions to the hyperbolic-elliptic mixed-type equations and related systems of PDEs will be presented.

GLOBAL SMOOTH SOLUTIONS IN R^3 TO SHORT WAVE-LONG WAVE INTERACTIONS SYSTEMS FOR VISCOUS COMPRESSIBLE FLUIDS

Series
PDE Seminar
Time
Tuesday, March 4, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hermano FridIMPA, Brazil
The short wave-long wave interactions for viscous compressibleheat conductive fluids is modeled, following Dias & Frid (2011), by a Benney-type system coupling Navier-Stokes equations with a nonlinear Schrodingerequation along particle paths. We study the global existence of smooth solutions to the Cauchy problem in R^3 when the initial data are small smooth perturbations of an equilibrium state. This is a joint work with Ronghua Panand Weizhe Zhang.

Some New Comparison Results in Balls and Shells

Series
PDE Seminar
Time
Tuesday, February 18, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jeffrey LangfordBucknell University
In a comparison theorem, one compares the solution of a given PDE to a solution of a second PDE where the data are "rearranged." In this talk, we begin by discussing some of the classical comparison results, starting with Talenti's Theorem. We then discuss Neumann comparison results, including a conjecture of Kawohl, and end with some new results in balls and shells involving cap symmetrization.

Pages