Seminars and Colloquia by Series

Harmonic Analysis techniques in Several Complex Variables

Series
Analysis Seminar
Time
Wednesday, March 30, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Loredona LanzaniSyracuse University
This talk concerns recent joint work with E. M. Stein on the extension to higher dimension of Calder\'on's andCoifman-McIntosh-Meyer's seminal results about the Cauchy integral for a Lipschitz planar curve (interpreted as the boundary of a Lipschitz domain $D\subset\mathbb C$). From the point of view of complex analysis, a fundamental feature of the 1-dimensional Cauchy kernel:\vskip-1.0em$$H(w, z) = \frac{1}{2\pi i}\frac{dw}{w-z}$$\smallskip\vskip-0.7em\noindent is that it is holomorphic (that is, analytic) as a function of $z\in D$. In great contrast with the one-dimensional theory, in higher dimension there is no obvious holomorphic analogueof $H(w, z)$. This is because of geometric obstructions (the Levi problem) that in dimension 1 are irrelevant. A good candidate kernel for the higher dimensional setting was first identified by Jean Lerayin the context of a $C^\infty$-smooth, convex domain $D$: while these conditions on $D$ can be relaxed a bit, if the domain is less than $C^2$-smooth (much less Lipschitz!) Leray's construction becomes conceptually problematic.In this talk I will present {\em(a)}, the construction of theCauchy-Leray kernel and {\em(b)}, the $L^p(bD)$-boundedness of the induced singular integral operator under the weakest currently known assumptions on the domain's regularity -- in the case of a planar domain these are akin to Lipschitz boundary, but in our higher-dimensional context the assumptions we make are in fact optimal. The proofs rely in a fundamental way on a suitably adapted version of the so-called ``\,$T(1)$-theorem technique'' from real harmonic analysis.Time permitting, I will describe applications of this work to complex function theory -- specifically, to the Szeg\H o and Bergman projections (that is, the orthogonal projections of $L^2$ onto, respectively, the Hardy and Bergman spaces of holomorphic functions).

Consistent reconstruction and the uniform noise mode

Series
Analysis Seminar
Time
Wednesday, March 16, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alex PowellVanderbilt University
Consistent reconstruction is a method for estimating a signal from a collection of noisy linear measurements that are corrupted by uniform noise. This problem arises, for example, in analog-to-digital conversion under the uniform noise model for memoryless scalar quantization. We shall give an overview of consistent reconstruction and prove optimal mean squared error bounds for the quality of approximation. We shall also discuss an iterative alternative (due to Rangan and Goyal) to consistent reconstruction which is also able to achieve optimal mean squared error; this is closely related to the classical Kaczmarz algorithm and provides a simple example of the power of randomization in numerical algorithms.

Atomic decomposition and weak factorization for Bergman-Orlicz spaces

Series
Analysis Seminar
Time
Wednesday, March 9, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Edgar TchoundjaUniversity of Yaounde
For $\mathbb B^n$ the unit ball of $\mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L_\alpha^\Phi(\mathbb B^n)$, which are generalizations of classical Bergman spaces. Weobtain their atomic decomposition and then prove weak factorization theorems involving the Bloch space and Bergman-Orlicz space and also weak factorization involving two Bergman-Orlicz spaces. This talk is based on joint work with D. Bekolle and A. Bonami.

Commutators and BMO

Series
Analysis Seminar
Time
Wednesday, March 2, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Brett WickGT and Washington University St Louis
In this talk we will discuss the connection between functions with bounded mean oscillation (BMO) and commutators of Calderon-Zygmund operators. In particular, we will discuss how to characterize certain BMO spaces related to second order differential operators in terms of Riesz transforms adapted to the operator and how to characterize commutators when acting on weighted Lebesgue spaces.

Multicommutators

Series
Analysis Seminar
Time
Wednesday, February 24, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Danqing He University of Missouri, Columbia
We generalize the Calderon commutator to the higher-dimensional multicommutator with more input functions in higher dimensions. For this new multilinear operator, we establish the strong boundedness of it in all possible open points by a new multilinear multiplier theorem utilizing a new type of Sobolev spaces.

Asymptotic zero distribution of some multiple orthogonal polynomials

Series
Analysis Seminar
Time
Monday, February 22, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Walter Van AsscheUniversity of Leuven, Belgium
The asymptotic distribution of the zeros of two families of multiple orthogonal polynomials will be given, namely the Jacobi-Pineiro polynomials (which are an extension of the Jacobi polynomials) and the multiple Laguerre polynomials of the first kind (which are an extension of the Laguerre polynomials). We use the nearest neighbor recurrence relations for these polynomials and a recent result on the ratio asymptotics of multiple orthogonal polynomials. We show how these asymptotic zero distributions are related to the Fuss-Catalan distribution.

The role of VC-dimension in the one-bit restricted isometry property

Series
Analysis Seminar
Time
Wednesday, February 17, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Scott SpencerGeorgia Tech
Compressed sensing illustrates the possibility of acquiring and reconstructing sparse signals via underdetermined (linear) systems. It is believed that iid Gaussian measurement vectors give near optimal results, with the necessary number of measurements on the order of $s \log(n/s)$ - $n$ is ambient dimension and $s$ is the sparsity threshold. The recovery algorithm used above relies on a certain quasi-isometry property of the measurement matrix. A surprising result is that the same order of measurements gives an analogous quasi-isometry in the extreme quantization of one-bit sensing. Bylik and Lacey deliver this result as a consequence of a certain stochastic process on the sphere. We will discuss an alternative method that relies heavily on the VC-dimension of a class of subsets on the sphere.

Characterization of two parameter matrix-valued BMO

Series
Analysis Seminar
Time
Wednesday, February 10, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dario MenaGeorgia Tech
In this work we prove that the space of two parameter, matrix-valued BMO functions can be characterized by considering iterated commutators with the Hilbert transform. Specifically, we prove that the norm in the BMO space is equivalent to the norm of the commutator of the BMO function with the Hilbert transform, as an operator on L^2. The upper bound estimate relies on a representation of the Hilbert transform as an average of dyadic shifts, and the boundedness of certain paraproduct operators, while the lower bound follows Ferguson and Lacey's wavelet proof for the scalar case.

A Discrete Quadratic Carleson Theorem

Series
Analysis Seminar
Time
Wednesday, February 3, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGatech
We will describe sufficient conditions on a set $\Lambda \subset [0,2\pi) $ so that the maximal operator below is bound on $\ell^2(Z)$. $$\sup _{\lambda \in \Lambda} \Big| \sum_{n\neq 0} e^{i \lambda n^2} f(x-n)/n\Big|$$ The integral version of this result is an influential result to E.M. Stein. Of course one should be able to take $\Lambda = [0,2\pi) $, but such a proof would have to go far beyond the already complicated one we will describe. Joint work with Ben Krause.

One Bit Sensing, RIP bounds and Empirical Processes

Series
Analysis Seminar
Time
Wednesday, January 27, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LaceyGatech
A signal is a high dimensional vector x, and a measurement is the inner product . A one-bit measurement is the sign of . These are basic objects, as will be explained in the talk, with the help of some videos of photons. The import of this talk is that one bit measurements can be as effective as the measurements themselves, in that the same number of measurements in linear and one bit cases ensure the RIP property. This is explained by a connection with variants of classical spherical cap discrepancy. Joint work with Dimtriy Bilyk.

Pages