- You are here:
- GT Home
- Home
- News & Events

Series: Analysis Seminar

TBA

Series: Analysis Seminar

TBA

Series: Analysis Seminar

TBA

Series: Analysis Seminar

Series: Analysis Seminar

TBA

Series: Analysis Seminar

It is well known that a Euclidean set of fixed Euclidean volume with least Euclidean surface area is a ball. For applications to theoretical computer science and social choice, an analogue of this statement for the Gaussian density is most relevant. In such a setting, a Euclidean set with fixed Gaussian volume and least Gaussian surface area is a half space, i.e. the set of points lying on one side of a hyperplane. This statement is called the Gaussian Isoperimetric Inequality. In the Gaussian Isoperimetric Inequality, if we restrict to sets that are symmetric (A= -A), then the half space is eliminated from consideration. It was conjectured by Barthe in 2001 that round cylinders (or their complements) have smallest Gaussian surface area among symmetric sets of fixed Gaussian volume. We discuss our result that says this conjecture is true if an integral of the curvature of the boundary of the set is not close to 1. <a href="https://arxiv.org/abs/1705.06643">https://arxiv.org/abs/1705.06643</a> <a href="http://arxiv.org/abs/1901.03934">http://arxiv.org/abs/1901.03934</a>

Series: Analysis Seminar

In this talk I present some variational problems of Aharanov-Bohm type, i.e., they include a magnetic flux that is entirely concentrated at a point. This is maybe the simplest example of a variational problems for systems, the wave function being necessarily complex. The functional is rotationally invariant and the issue to be discussed is whether the optimizer have this symmetry or whether it is broken.

Series: Analysis Seminar

We prove sparse bounds for the spherical maximal operator of Magyar,Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint esti-mate. The new method of proof is inspired by ones by Bourgain and Ionescu, is veryefficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arccomponents. The efficiency arises as one only needs a single estimate on each elementof the decomposition.

Series: Analysis Seminar

We are going to discuss some recent results pertaining to the Falconer distance conjecture, including the joint paper with Guth, Ou and Wang establishing the $\frac{5}{4}$ threshold in the plane. We are also going to discuss the extent to which the sharpness of our method and similar results is tied to the distribution of lattice points on convex curves and surfaces.

Series: Analysis Seminar

Valuations are finitely additive measures on convex compact subsets of a finite dimensional vector space. The theory of valuations originates in convex geometry. Valuations continuous in the Hausdorff metric play a special role, and we will concentrate in the talk on this class of valuations. In recent years there was a considerable progress in the theory and its applications. We will describe some of the progress with particular focus on the multiplicative structure on valuations and its applications to kinematic formulas of integral geometry.