Seminars and Colloquia by Series

Introduction to the AJ Conjecture

Series
Geometry Topology Working Seminar
Time
Friday, February 19, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Anh TranGeorgia Tech

Please Note: This is part 1 of a two part talk. The second part will continue next week.

I will introduce the AJ conjecture (by Garoufalidis) which relates the A-polynomial and the colored Jones polynomial of a knot in the 3-sphere. Then I will verify it for the trefoil and the figure 8 knots (due to Garoufalidis) and torus knots (due to Hikami) by explicit calculations.

Algebraic structures and legendrian contact homology

Series
Geometry Topology Working Seminar
Time
Friday, February 12, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
John EtnyreGeorgia Tech
After, briefly, recalling the definition of contact homology, a powerful but somewhat intractable and still largely unexplored invariant of Legendrian knots in contact structures, I will discuss various ways of constructing more tractable and computable invariants from it. In particular I will discuss linearizations, products, massy products, A_\infty structures and terms in a spectral sequence. I will also show examples that demonstrate some of these invariants are quite powerful. I will also discuss what is known and not known about the relations between all of these invariants.

Intro to Branched Covers

Series
Geometry Topology Working Seminar
Time
Friday, February 5, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Meredith CaseyGeorgia Tech
Exact Topic TBA. Talk will be a general survery of branched covers, possibly including covers from the algebraic geometry perspective. In addition we will look at branched coveres in higher dimensions, in the contact world, and my current research interests. This talk will be a general survery, so very little background is assumed.

Regularity and Geometry of Real Algebraic Convex Hypersurfaces

Series
Geometry Topology Working Seminar
Time
Friday, January 29, 2010 - 14:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 269
Speaker
Mohammad Ghomi School of Mathematics, Georgia Tech
We prove that convex hypersurfaces M in R^n which are level sets of functions f: R^n --> R are C^1-regular if f has a nonzero partial derivative of some order at each point of M. Furthermore, applying this result, we show that if f is algebraic and M is homeomorphic to R^(n-1), then M is an entire graph, i.e., there exists a line L in R^n such that M intersects every line parallel L at precisely one point. Finally we will give a number of examples to show that these results are sharp.

Deformations of Unbounded Convex Bodies and Hypersurfaces

Series
Geometry Topology Working Seminar
Time
Friday, January 15, 2010 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Mohammad GhomiGeorgia Tech
We study the topology of the space bd K^n of complete convex hypersurfaces of R^n which are homeomorphic to R^{n-1}. In particular, using Minkowski sums, we construct a deformation retraction of bd K^n onto the Grassmannian space of hyperplanes. So every hypersurface in bd K^n may be flattened in a canonical way. Further, the total curvature of each hypersurface evolves continuously and monotonically under this deformation. We also show that, modulo proper rotations, the subspaces of bd K^n consisting of smooth, strictly convex, or positively curved hypersurfaces are each contractible, which settles a question of H. Rosenberg.

Constructing 3-Manifolds Using Dehn Surgery on Handlebodies

Series
Geometry Topology Working Seminar
Time
Friday, November 6, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Meredith CaseyGeorgia Tech
The goal of this talk is to describe simple constructions by which we can construct any compact, orientable 3-manifold. It is well-known that every orientable 3-manifold has a Heegaard splitting. We will first define Heegaard splittings, see some examples, and go through a very geometric proof of this therem. We will then focus on the Dehn-Lickorish Theorem, which states that any orientation-preserving homeomorphism of an oriented 2-manifold without boundary can by presented as the composition of Dehn twists and homeomorphisms isotopic to the identity. We will prove this theorm, and then see some applications and examples. With both of these resutls together, we will have shown that using only handlebodies and Dehn twists one can construct any compact, oriented 3-manifold.

Bordered Heegaard-Floer Theory

Series
Geometry Topology Working Seminar
Time
Friday, October 30, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Shea Vela-VickColumbia University
In this talk I will discuss a generalizations and/oo applications of bordered Floer homology. After reviewing the basic definitions and constructions, I will focus either on an application to sutured Floer homology developed by Rumen Zarev, or on applications of the theory to the knot Floer homology. (While it would be good to have attended the other two talks this week, this talk shoudl be independent of them.) This is a 2 hour talk.

Introduction to Bordered Heegaard-Floer homology II

Series
Geometry Topology Working Seminar
Time
Wednesday, October 28, 2009 - 10:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Shea Vela-VickColumbia University
Here we will introduce the basic definitions of bordered Floer homology. We will discuss bordered Heegaard diagrams as well as the algebraic objects, like A_\infinity algebras and modules, involved in the theory. We will also discuss the pairing theorem which states that if Y = Y_1 U_\phi Y_2 is obtained by identifying the (connected) boundaries of Y_1 and Y_2, then the closed Heegaard Floer theory of Y can be obtained as a suitable tensor product of the bordered theories of Y_1 and Y_2.Note the different time and place!This is a 1.5 hour talk.

Introduction to Bordered Heegaard-Floer homology

Series
Geometry Topology Working Seminar
Time
Monday, October 26, 2009 - 10:00 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Shea Vela-VickColumbia University
We will focus on the "toy model" of bordered Floer homology. Loosely speaking, this is bordered Floer homology for grid diagrams of knots. While the toy model unfortunately does not provide us with any knot invariants, it highlights many of the key ideas needed to understand the more general theory. Note the different time and place! This is a 1.5 hour talk.

Pages