Seminars and Colloquia by Series

Cyclic polynomials in two variables

Series
Analysis Seminar
Time
Wednesday, September 23, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alan Sola University of South Florida
In my talk, I will discuss coordinate shifts acting on Dirichlet spaces on the bidisk and the problem of finding cyclic vectors for these operators. For polynomials in two complex variables, I will describe a complete characterization given in terms of size and nature of zero sets in the distinguished boundary.

Sobolev orthogonal polynomials in several variables

Series
Analysis Seminar
Time
Wednesday, August 26, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lidia FernandezApplied Math Dept, University of Granada
The purpose of this talk is to introduce some recent works on the field of Sobolev orthogonal polynomials. I will mainly focus on our two last works on this topic. The first has to do with orthogonal polynomials on product domains. The main result shows how an orthogonal basis for such an inner product can be constructed for certain weight functions, in particular, for product Laguerre and product Gegenbauer weight functions. The second one analyzes a family of mutually orthogonal polynomials on the unit ball with respect to an inner product which involves the outward normal derivatives on the sphere. Using the representation of these polynomials in terms of spherical harmonics, algebraic and analytic properties will be deduced. First, we will get connection formulas relating classical multivariate orthogonal polynomials on the ball with our family of Sobolev orthogonal polynomials. Then explicit expressions for the norms will be obtained, among other properties.

Analytic Continuation of Analytic Fractals

Series
Analysis Seminar
Time
Wednesday, June 24, 2015 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael BarnsleyMathematical Sciences Institute, Australian National University
Examples of analytic fractals are Julia sets, Koch Curves, and Sierpinski triangles, and graphs of analytic functions. Given a piece of such a set, how does one "continue" it, in a manner consistent with the classical construction of an analytic Riemannian manifold, starting from a locally convergent series expansion?

On the convergence of Hermite-Pade approximants for rational perturbations of a Nikishin system

Series
Analysis Seminar
Time
Wednesday, May 6, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guillermo LopezUniversity of Madrid Carlos III
In the recent past multiple orthogonal polynomials have attracted great attention. They appear in simultaneous rational approximation, simultaneous quadrature rules, number theory, and more recently in the study of certain random matrix models. These are sequences of polynomials which share orthogonality conditions with respect to a system of measures. A central role in the development of this theory is played by the so called Nikishin systems of measures for which many results of the standard theory of orthogonal polynomials has been extended. In this regard, we present some results on the convergence of type I and type II Hermite-Pade approximation for a class of meromorphic functions obtained by adding vector rational functions with real coefficients to a Nikishin system of functions (the Cauchy transforms of a Nikishin system of measures).

Matrix weighted function spaces and the Carleson Embedding Theorem

Series
Analysis Seminar
Time
Wednesday, April 22, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Amalia CuliucBrown University
We will prove a recent version of the weighted Carleson Embedding Theorem for vector-valued function spaces with matrix weights. Time permitting, we will discuss the applications of this theorem to estimates on well-localized operators. This result relies heavily on the work of Kelly Bickel and Brett Wick and is joint with Sergei Treil.

A pointwise estimate for positive dyadic shifts and some applications

Series
Analysis Seminar
Time
Wednesday, April 15, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guillermo ReyMichigan State
We will prove a pointwise estimate for positive dyadic shifts of complexitym which is linear in the complexity. This can be used to give a pointwiseestimate for Calderon-Zygmund operators and to answer a question posed byA. Lerner. Several applications will be discussed.- This is joint work with Jose M. Conde-Alonso.

Reaching L^1 via Extrapolation Theory

Series
Analysis Seminar
Time
Wednesday, April 8, 2015 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Carlos DomingoUniversity of Barcelona
The classical Rubio de Francia extrapolation allows you to obtain strong-type estimates for weights in A_p (and every p>1) if you can show that it holds for some p_0>1. However, the endpoint p=1 has to be treated separately. In this talk we will explain how to deduce weak-type (1,1) estimates for A_1 weights if we have a certain restricted weak-type inequality at some level p_0>1. We will then show how this approach can be applied to the Bochner-Riesz operator at the critical index and Fourier multipliers.

A new variational principle for integrable systems

Series
Analysis Seminar
Time
Tuesday, April 7, 2015 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sarah LobbUniversity of Sidney
The conventional point of view is that the Lagrangian is a scalar object, which through the Euler-Lagrange equations provides us with one single equation. However, there is a key integrability property of certain discrete systems called multidimensional consistency, which implies that we are dealing with infinite hierarchies of compatible equations. Wanting this property to be reflected in the Lagrangian formulation, we arrive naturally at the construction of Lagrangian multiforms, i.e., Lagrangians which are the components of a form and satisfy a closure relation. Then we can propose a new variational principle for discrete integrable systems which brings in the geometry of the space of independent variables, and from this principle derive any equation in the hierarchy.

Two Lax systems for the Painleve II equation

Series
Analysis Seminar
Time
Thursday, April 2, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
rm 005
Speaker
Karl LiechtyDePaul University

Please Note: Karl Liechty is the winner of the 2015 Szego prize in orthogonal polynomials and special functions.

I will discuss two different Lax systems for the Painleve II equation. One is of size 2\times 2 and was first studied by Flaschka and Newell in 1980. The other is of size 4\times 4, and was introduced by Delvaux, Kuijlaars, and Zhang in 2010. Both of these objects appear in problems in random matrix theory and closely related fields. I will describe how they are related, and discuss the applications of this relation to random matrix theory.

On an endpoint mapping property for certain bilinear pseudodifferential operators

Series
Analysis Seminar
Time
Wednesday, April 1, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Virginia NaiboKansas State University
The main result to be discussed will be the boundedness from $L^\infty \times L^\infty$ into $BMO$ of bilinear pseudodifferential operators with symbols in a range of bilinear H\"ormander classes of critical order. Such boundedness property is achieved by means of new continuity results for bilinear operators with symbols in certain classes and a new pointwise inequality relating bilinear operators and maximal functions. The role played by these estimates within the general theory will be addressed.

Pages