Seminars and Colloquia by Series

Dependent Random Choice

Series
ACO Seminar
Time
Friday, October 22, 2010 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Jacob FoxMathematics, MIT
We describe a simple and yet surprisingly powerful probabilistic technique which shows how to find in a dense graph a large subset of vertices in which all (or almost all) small subsets have many common neighbors. Recently this technique has had several striking applications to Extremal Graph Theory, Ramsey Theory, Additive Combinatorics, and Combinatorial Geometry. In this talk, which is based on a survey with Benny Sudakov, we discuss some of these applications.

New Convex Programs and Distributed Algorithms for Fisher Markets

Series
ACO Seminar
Time
Tuesday, May 4, 2010 - 16:00 for 1 hour (actually 50 minutes)
Location
Klaus 1116W
Speaker
Nikhil DevanurMicrosoft Research

Please Note: Hosted by Vijay Vazirani

I will talk about new results on convex programs and distributed algorithms for Fisher markets with linear and spending constraint utilities. In particular: (i) show a new convex program for the linear utilities case of Fisher markets. This program easily extends to the case of spending constraint utilities as well, thus resolving an open question raised by Vazirani; (ii) show that the gradient descent algorithm with respect to a Bregman divergence converges with rate O(1/t) under a condition that is weaker than having Lipschitz continuous gradient (which is the usual assumption in the optimization literature for obtaining the same rate); (iii) show that the Proportional Response dynamics recently introduced by Zhang is equivalent to a gradient descent algorithm for solving the new convex program. This insight also gives us better convergence rates, and helps us generalize it to spending constraint utilities.

Unrelated Machine Selection and Scheduling

Series
ACO Seminar
Time
Thursday, March 11, 2010 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Lisa FleischerProfessor, Dartmouth College
We look at problems of scheduling jobs to machines when the processing time of a job is machine dependent. Common objectives in this framework are to minimize the maximum load on a machine, or to minimize the average completion time of jobs. These are well-studied problems. We consider the related problem of trying to select a subset of machines to use to minimize machine costs subject to bounds on the maximum load or average completion time of the corresponding schedule. These problems are NP-hard and include set-cover as a special case. Thus we focus on approximation algorithms and get tight, or almost tight approximation guarantees. A key part of our results depends on showing the submodularity of the objective of a related optimization problem.

Random regular graphs: from spectrum to geometry and back

Series
ACO Seminar
Time
Friday, October 23, 2009 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Eyal LubetzkyMicrosoft Research, Redmond, WA
The class of random regular graphs has been the focus of extensive study highlighting the excellent expansion properties of its typical instance. For instance, it is well known that almost every regular graph of fixed degree is essentially Ramanujan, and understanding this class of graphs sheds light on the general behavior of expanders. In this talk we will present several recent results on random regular graphs, focusing on the interplay between their spectrum and geometry. We will first discuss the relation between spectral properties and the abrupt convergence of the simple random walk to equilibrium, derived from precise asymptotics of the number of paths between vertices. Following the study of the graph geometry we proceed to its random perturbation via exponential weights on the edges (first-passage-percolation). We then show how this allows the derivation of various properties of the classical Erd\H{o}s-R\'enyi random graph near criticality. Finally, returning to the spectrum of random regular graph, we discuss the question of how close they really are to being Ramanujan and conclude with related problems involving random matrices. Based on joint works with Jian Ding, Jeong Han Kim and Yuval Peres, with Allan Sly and with Benny Sudakov and Van Vu.

Optimal Query Complexity Bounds for Finding Graphs

Series
ACO Seminar
Time
Wednesday, April 29, 2009 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Jeong Han KimYonsei University and NIMS, South Korea
We consider the problem of finding an unknown graph by using two types of queries with an additive property. Given a graph, an additive query asks the number of edges in a set of vertices while a cross-additive query asks the number of edges crossing between two disjoint sets of vertices. The queries ask sum of weights for the weighted graphs. These types of queries were partially motivated in DNA shotgun sequencing and linkage discovery problem of artificial intelligence. For a given unknown weighted graph G with n vertices, m edges, and a certain mild condition on weights, we prove that there exists a non-adaptive algorithm to find the edges of G using O\left(\frac{m\log n }{\log m}\right) queries of both types provided that m \geq n^{\epsilon} for any constant \epsilon> 0. For a graph, it is shown that the same bound holds for all range of m. This settles a conjecture of Grebinski for finding an unweighted graph using additive queries. We also consider the problem of finding the Fourier coefficients of a certain class of pseudo-Boolean functions. A similar coin weighing problem is also considered. (This is joint work with S. Choi)

Polynomial hierarchy, Betti numbers and a real analogue of Toda's theorem

Series
ACO Seminar
Time
Friday, April 10, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Saugata BasuSchool of Mathematics, Georgia Tech and Purdue University
Toda proved in 1989 that the (discrete) polynomial time hierarchy, {\bf PH}, is contained in the class {\bf P}^{#\bf P}, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #{\bf P}. This result which illustrates the power of counting is considered to be a seminal result in computational complexity theory. An analogous result in the complexity theory over the reals (in the sense of Blum-Shub-Smale real Turing machines) has been missing so far. We formulate and prove a real analogue of Toda's theorem. Unlike Toda's proof in the discrete case, which relied on sophisticated combinatorial arguments, our proof is topological in nature. (Joint work with Thierry Zell.)

Matrix Completion from Fewer Entries

Series
ACO Seminar
Time
Monday, March 23, 2009 - 16:30 for 2 hours
Location
Skiles 269
Speaker
Andrea MontanariStanford University
Low-rank models are frequently used in machine learning and statistics. An important domain of application is provided by collaborative filtering, whereby a low-rank matrix describes the ratings that a large set of users attribute to a large set of products. The problem is in this case to predict future ratings from a sparse subset currently available. The dataset released for the Netflix challenge provides an ideal testbed for theory and algorithms for learning low-rank matrices. Given M, a random n x n matrix of rank r, we assume that a uniformly random subset E of its entries is observed. We describe an efficient procedure that reconstructs M from |E| = O(rn) observed entries with arbitrarily small root mean square error, whenever M is satisfies an appropriate incoherence condition. If r = O(1), the algorithm reconstructs M exactly from O(n log n) entries. This settles a recent open problem by Candes and Recht. In the process of proving these statements, we obtain a generalization of a celebrated result by Friedman-Kahn-Szemeredi and Feige-Ofek on the spectrum of sparse random matrices. [Based on joint work with R. H. Keshavan and S. Oh]

The Adwords problem under random permutations

Series
ACO Seminar
Time
Wednesday, March 11, 2009 - 16:00 for 1 hour (actually 50 minutes)
Location
Klaus 2100
Speaker
Nikhil DevanurMicrosoft Research
We consider the problem of a search engine trying to assign a sequence of search keywords to a set of competing bidders, each with a daily spending limit. The goal is to maximize the revenue generated by these keyword sales, bearing in mind that, as some bidders may eventually exceed their budget, not all keywords should be sold to the highest bidder. We assume that the sequence of keywords (or equivalently, of bids) is revealed on-line. Our concern will be the competitive ratio for this problem versus the off-line optimum. We extend the current literature on this problem by considering the setting where the keywords arrive in a random order. In this setting we are able to achieve a competitive ratio of 1-\epsilon under some mild, but necessary, assumptions. In contrast, it is already known that when the keywords arrive in an adversarial order, the best competitive ratio is bounded away from 1. Our algorithm is motivated by PAC learning, and proceeds in two parts: a training phase, and an exploitation phase. Joint work with Tom Hayes, UNM.

Timing Closure in Chip Design

Series
ACO Seminar
Time
Tuesday, October 21, 2008 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Stephan HeldUniversity of Bonn
A central characteristic of a computer chip is the speed at which it processes data, determined by the time it takes electrical signals to travel through the chip. A major challenge in the design of a chip is to achieve timing closure, that is to find a physical realization fulfilling the speed specifications. We give an overview over the major tasks for optimizing the performance of computer chips and present several new algorithms. For the topology generation of repeater trees, we introduce a variant of the Steiner tree problem and present fast algorithm that balances efficiently between the resource consumption and performance. Another indispensable task is gate sizing, a discrete optimization problem with nonlinear or PDE constraints, for which a fast heuristic is introduced. The effectiveness in practice is demonstrated by comparing with newly developed lower bounds for the achievable delay. We conclude with a variant of the time-cost tradeoff problem from project management. In contrast to the usual formulation cycles are allowed. We present a new method to compute the time-cost tradeoff curve in such instances using combinatorial algorithms. Several problems in chip design can be modeled as time-cost tradeoff problems, e.g. threshold voltage optimization of plane assignment.

Pages