Seminars and Colloquia by Series

The nu+ equivalence class of genus one knots

Series
Geometry Topology Seminar
Time
Monday, March 4, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 154
Speaker
Kouki SatoUniversity of Tokyo
The nu+ equivalence is an equivalence relation on the knot concordance group. It is known that the equivalence can be seen as a certain stable equivalence on knot Floer complexes, and many concordance invariants derived from Heegaard Floer theory are invariant under the equivalence. In this talk, we show that any genus one knot is nu+ equivalent to one of the unknot, the trefoil and its mirror.

Joint GT-UGA Seminar at GT - Knots in homology spheres, concordance, and crossing changes

Series
Geometry Topology Seminar
Time
Monday, February 25, 2019 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chris DavisU Wisconsin Eau Claire
Any knot in $S^3$ may be reduced to a slice knot by making some crossing changes. Indeed, this slice knot can be taken to be the unknot. We show that the same is true of knots in homology spheres, at least topologically. Something more complicated is true smoothly, as not every homology sphere bounds a smooth simply connected homology ball. We prove that a knot in a homology sphere is null-homotopic in a homology ball if and only if that knot can be reduced to the unknot by a sequence of concordances and crossing changes. We will show that there exist knot in a homology sphere which cannot be reduced to the unknot by any such sequence. As a consequence, there are knots in homology spheres which are not concordant to those examples produced by Levine in 2016 and Hom-Lidman-Levine in 2018.

Joint GT-UGA Seminar at GT - Knot Traces and the Slice Genus

Series
Geometry Topology Seminar
Time
Monday, February 25, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lisa PiccirilloUT Austin
Smooth simply connected 4-manifolds can admit second homology classes not representable by smoothly embedded spheres; knot traces are the prototypical example of 4-manifolds with such classes. I will show that there are knot traces where the minimal genus smooth surface generating second homology is not of the canonical type, resolving question 1.41 on the Kirby problem list. I will also use the same tools to show that Conway knot does not bound a smooth disk in the four ball, which completes the classification of slice knots under 13 crossings and gives the first example of a non-slice knot which is both topologically slice and a positive mutant of a slice knot.

Heegaard Floer and the homology cobordism group

Series
Geometry Topology Seminar
Time
Monday, February 18, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jen HomGeorgia Tech
We show that the three-dimensional homology cobordism group admits an infinite-rank summand. It was previously known that the homology cobordism group contains an infinite-rank subgroup and a Z-summand. Our proof relies on the involutive Heegaard Floer package of Hendricks-Manolescu and Hendricks-Manolescu-Zemke. This is joint work with I. Dai, M. Stoffregen, and L. Truong.

Simplification of singularities of Lagrangian and Legendrian fronts

Series
Geometry Topology Seminar
Time
Monday, February 11, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel Álvarez-GavelaIAS
We will present an h-principle for the simplification of singularities of Lagrangian and Legendrian fronts. The h-principle says that if there is no homotopy theoretic obstruction to simplifying the singularities of tangency of a Lagrangian or Legendrian submanifold with respect to an ambient foliation by Lagrangian or Legendrian leaves, then the simplification can be achieved by means of a Hamiltonian isotopy. We will also discuss applications of the h-principle to symplectic and contact topology.

Acylindrical hyperbolicity of non-elementary convergence groups

Series
Geometry Topology Seminar
Time
Friday, February 1, 2019 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bin SunVanderbilt
The notion of an acylindrically hyperbolic group was introduced by Osin as a generalization of non-elementary hyperbolic and relative hyperbolic groups. Ex- amples of acylindrically hyperbolic groups can be found in mapping class groups, outer automorphism groups of free groups, 3-manifold groups, etc. Interesting properties of acylindrically hyperbolic groups can be proved by applying techniques such as Monod-Shalom rigidity theory, group theoretic Dehn filling, and small cancellation theory. We have recently shown that non-elementary convergence groups are acylindrically hyperbolic. This result opens the door for applications of the theory of acylindrically hyperbolic groups to non-elementary convergence groups. In addition, we recovered a result of Yang which says a finitely generated group whose Floyd boundary has at least 3 points is acylindrically hyperbolic.

Joint GT-UGA Seminar at UGA - Link Floer homology and the stabilization distance

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 16:00 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Ian ZemkePrinceton University
In this talk, we describe some applications of link Floer homology to the topology of surfaces in 4-space. If K is a knot in S^3, we will consider the set of surfaces in B^4 which bound K. This space is naturally endowed with a plethora of non-Euclidean metrics and pseudo-metrics. The simplest such metric is the stabilization distance, which is the minimum k such that there is a stabilization sequence connecting two surfaces such that no surface in the sequence has genus greater than k. We will talk about how link Floer homology can be used to give lower bounds, as well as some techniques for computing non-trivial examples. This is joint work with Andras Juhasz.

Joint GT-UGA Seminar at UGA - Knot Concordances in S^1 x S^2 and Constructing Akbulut-Ruberman Type Exotic 4-Manifolds

Series
Geometry Topology Seminar
Time
Monday, January 28, 2019 - 14:30 for 1 hour (actually 50 minutes)
Location
Boyd
Speaker
Eylem YildizMichigan State University
I will discuss knot concordances in 3-manifolds. In particular I will talk about knot concordances of knots in the free homotopy class of S^1 x {pt} in S^1 x S^2. It turns out, we can use some of these concordances to construct Akbulut-Ruberman type exotic 4-manifolds. As a consequence, at the end of the talk we will see absolutely exotic Stein pair of 4-manifolds. This is joint work with Selman Akbulut.

Maximal Weinstein domains

Series
Geometry Topology Seminar
Time
Monday, December 3, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Oleg LazarevColumbia
Weinstein cobordisms give a natural relationship on the set of Weinstein domains. Flexible Weinstein domains are minimal with respect to this relationship. In this talk, I will use these minimal domains to construct maximal Weinstein domains: any two high-dimensional Weinstein domains with the same topology are Weinstein subdomains of a maximal Weinstein domain also with the same topology. Using this construction, a wide range of new Weinstein domains can be produced, for example exotic cotangent bundles of spheres containing many different closed exact Lagrangians. On the other hand, I will explain how the same line of ideas can be used to prove restrictions on which categories can arise as the Fukaya categories of certain Weinstein domains.

Pages