Seminars and Colloquia by Series

The stability of cylindrical pendant drops and soap films

Series
PDE Seminar
Time
Tuesday, March 13, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
John McCuanGeorgia Tech
The stability of a liquid drop of prescribed volume hanging from a circular cylindrical tube in a gravity field has been a problem of continuing interest. This problem was treated variationally in the late '70s by Henry Wente who showed there was a continuous family indexed by increasing volume which terminated in a final unstable equilibrium due to one or the other of two specific geometric mechanisms. I will describe a similar problem arising in mathematical biology for drops at the bottom of a rectangular tube and explain, among other things, how the associated instability occurs through exactly three physical mechanisms.

Stochastic Scalar Conservation Law

Series
PDE Seminar
Time
Tuesday, February 28, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jin FengUniversity of Kansas
This talk considers a scalar conservation (balance) law equation with random (martingale measure) source term. A new notion of entropic solution is introduced as the underlying calculus for change of variable needs to be changed into Ito's calculus. This is due to irregularities in the trajectory of particles caused by randomness. In the new notion, entropy production has additional terms. We discuss ways to handle such term so that a uniqueness theory can still be established. Additionally, stochastic generalizations of compensated compactness will be given. This was a joint work with David Nualart. It appeared in Journal of Functional Analysis, Vol 255, Issue 2, 2008, pages 313-373.

Remarks on the Theory of the Divergence-Measure Fields

Series
PDE Seminar
Time
Tuesday, February 21, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hermano FridIMPA, Brazil
We review the theory of the (extended) divergence-measure fields providing an up to date account of its basic results established by Chen and Frid (1999, 2002), as well as the more recent important contributions by Silhavy (2008, 2009). We include a discussion on some pairings that are important in connection with the definition of normal trace for divergence-measure fields. We also review its application to the uniqueness of Riemann solutions to the Euler equations in gas dynamics, as given by Chen and Frid (2002). While reviewing the theory, we simplify a number of proofs allowing an almost self-contained exposition.

Viscoelastic Navier-Stokes equations with damping

Series
PDE Seminar
Time
Tuesday, February 14, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ryan HyndCourant Institute of Mathematical Sciences, New York University
We prove an analog of the Caffarelli-Kohn-Nirenberg theorem for weak solutions of a system of PDE that model a viscoelastic fluid in the presence of an energy damping mechanism. The system was recently introduced in a method of establishing the global in time existence of weak solutions of the well known Oldroyd model, which remains an open problem.

The surface quasi-geostrophic equation and its generalizations.

Series
PDE Seminar
Time
Tuesday, February 7, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jiahong WuOklahoma State University
Fundamental issues such as the global regularity problem concerning the surface quasi-geostrophic (SQG) and related equations have attracted a lot of attention recently. Significant progress has been made in the last few years. This talk summarizes some current results on the critical and supercritical SQG equations and presents very recent work on the generalized SQG equations. These generalized equations are active scalar equations with the velocity fields determined by the scalars through general Fourier multiplier operators. The SQG equation is a special case of these general models and it corresponds to the Riesz transform. We obtain global regularity for equations with velocity fields logarithmically singular than the 2D Euler and local regularity for equations with velocity fields more singular than those corresponding to the Riesz transform. The results are from recent papers in collaboration with D. Chae and P. Constantin, and with D. Chae, P. Constantin, D. Cordoba and F. Gancedo.

On the stability of Prandtl boundary layers and the inviscid limit of the Navier-Stokes equations.

Series
PDE Seminar
Time
Tuesday, November 22, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Toan T. NguyenBrown University
In fluid dynamics, one of the most classical issues is to understand the dynamics of viscous fluid flows past solid bodies (e.g., aircrafts, ships, etc...), especially in the regime of very high Reynolds numbers (or small viscosity). Boundary layers are typically formed in a thin layer near the boundary. In this talk, I shall present various ill-posedness results on the classical Prandtl equation, and discuss the relevance of boundary-layer expansions and the vanishing viscosity limit problem of the Navier-Stokes equations. I will also discuss viscosity effects in destabilizing stable inviscid flows.

Regularity and decay estimates of dissipative equations.

Series
PDE Seminar
Time
Tuesday, November 8, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hantaek BaeUniversity of Maryland
We establish Gevrey class regularity of solutions to dissipative equations. The main tools are the Kato-Ponce inequality for Gevrey estimates in Sobolev spaces and the Gevrey estimates in Besov spaces using the paraproduct decomposition. As an application, we obtain temporal decay of solutions for a large class of equations including the Navier-Stokes equations, the subcritical quasi-geostrophic equations.

Global existence results for water waves

Series
PDE Seminar
Time
Tuesday, November 1, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pierre GermainNew York University, Courant Institute of Mathematical Sciences
I will describe results of global existence and scattering for water waves (inviscid, irrotational), in the case of small data. I will examine two physical settings: gravity, but no capillarity; or capillarity, but no gravity. The proofs rely on the space-time resonance method, which I will briefly present. This is joint work with Nader Masmoudi and Jalal Shatah.

The Fractal Nature of the Abelian Sandpile

Series
PDE Seminar
Time
Tuesday, October 25, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Charles SmartMIT
I will discuss a natural elliptic obstacle problem that arises in the study of the Abelian sandpile. The Abelian sandpile is a deterministic growth model from statistical physics which produces beautiful fractal-like images. In recent joint work with Wesley Pegden, we characterize the continuum limit of the sandpile processusing PDE techniques. In follow up work with Lionel Levine and Wesley Pegden, we partially describe the fractal structure of the stable sandpiles via a careful analysis of the limiting obstacle problem.

Ground state for nonlinear Schrodinger equation with sign-changing and vanishing potential.

Series
PDE Seminar
Time
Tuesday, October 4, 2011 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zhengping WangWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, and Georgia Tech
We consider the stationary nonlinear Schrodinger equation when the potential changes sign and may vanish at infinity. We prove that there exists a sign-changing ground state and the so called energy doubling property for sign-changing solutions does not hold. Furthermore, we find that the ground state energy is not equal to the infimum of energy functional over the Nehari manifold. These phenomena are quite different from the case of positive potential.

Pages