Seminars and Colloquia by Series

Flag Hardy space theory—an answer to a question by E.M. Stein.

Series
Analysis Seminar
Time
Wednesday, September 20, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ji LiMacquarie University


In 1999, Washington University in Saint Louis hosted a conference on Harmonic Analysis to celebrate the 70th birthday of G. Weiss. In his talk in flag singular integral operators, E. M. Stein asked “What is the Hardy space theory in the flag setting?” In our recent paper, we characterise completely a flag Hardy space on the Heisenberg group. It is a proper subspace of the classical one-parameter Hardy space of Folland and Stein that was studied by Christ and Geller. Our space is useful in several applications, including the endpoint boundedness for certain singular integrals associated with the Sub-Laplacian on Heisenberg groups, and representations of flag BMO functions.

On displacement concavity of the relative entropy

Series
Analysis Seminar
Time
Wednesday, September 6, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Liran RotemTechnion

It is known for many years that various inequalities in convex geometry have information-theoretic analogues. The most well known example is the Entropy power inequality which corresponds to the Brunn-Minkowski inequality, but the theory of optimal transport allows to prove even better analogues. 

At the same time, in recent years there is a lot of interest in the role of symmetry in Brunn-Minkowski type inequalities. There are many open conjectures in this direction, but also a few proven theorems such as the Gaussian Dimensional Brunn-Minkowski inequality. In this talk we will discuss the natural question — do the known information-theoretic inequalities similarly improve in the presence of symmetry?  I will present some cases where the answer is positive together with some open problems. 

Based on joint work with Gautam Aishwarya. 

A quantitative stability estimate for the Sobolev Inequality

Series
Analysis Seminar
Time
Wednesday, August 30, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Michael LossGaTech

I’ll present a quantitative version of a stability estimate
for the Sobolev Inequality improving previous results of Bianchi
and Egnell. The estimate has the correct dimensional dependence
which leads to a stability estimate for the Logarithmic Sobolev inequality.
This is joint work with Dolbeault, Esteban, Figalli and Frank.

CANCELED — Multiplier weak type inequalities for maximal operators and singular integrals

Series
Analysis Seminar
Time
Wednesday, April 19, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
This seminar has been cancelled and will be rescheduled next year.
Speaker
Brandon SweetingUniversity of Alabama

This seminar has beeb cancelled and will be rescheduled next year.  We discuss a kind of weak type inequality for the Hardy-Littlewood maximal operator and Calderón-Zygmund singular integral operators that was first studied by Muckenhoupt and Wheeden and later by Sawyer. This formulation treats the weight for the image space as a multiplier, rather than a measure, leading to fundamentally different behavior. Such inequalities arise in the generalization of weak-type spaces to the matrix weighted setting and find applications in scalar two-weight norm inequalities via interpolation with change of measures. In this talk, I will discuss quantitative estimates obtained for $A_p$ weights, $p > 1$, that generalize those results obtained by Cruz-Uribe, Isralowitz, Moen, Pott and Rivera-Ríos for $p = 1$. I will also discuss an endpoint result for the Riesz potentials.

Combinatorial moment sequences

Series
Analysis Seminar
Time
Wednesday, April 5, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Natasha BlitvicQueen Mary University of London

We will look at a number of interesting examples — some proven, others merely conjectured — of Hamburger moment sequences in combinatorics. We will consider ways in which this positivity may be expected, for instance in different types of combinatorial statistics on perfect matchings that turn out to encode moments in noncommutative analogues of the classical Central Limit Theorem. We will also consider situations in which this positivity may be surprising, and where proving it would open up new approaches to a class of very hard open problems in combinatorics.

A new conjecture to unify Fourier restriction and Bochner-Riesz

Series
Analysis Seminar
Time
Wednesday, March 29, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ruixiang ZhangUC Berkeley

The Fourier restriction conjecture and the Bochner-Riesz conjecture ask for Lebesgue space mapping properties of certain oscillatory integral operators. They both are central in harmonic analysis, are open in dimensions $\geq 3$, and notably have the same conjectured exponents. In the 1970s, H\"{o}rmander asked if a more general class of operators (known as H\"{o}rmander type operators) all satisfy the same $L^p$-boundedness as in the above two conjectures. A positive answer to H\"{o}rmander's question would resolve the above two conjectures and have more applications such as in the manifold setting. Unfortunately H\"{o}rmander's question is known to fail in all dimensions $\geq 3$ by the work of Bourgain and many others. It continues to fail in all dimensions $\geq 3$ even if one adds a ``positive curvature'' assumption which one does have in restriction and Bochner-Riesz settings. Bourgain showed that in dimension $3$ one always has the failure unless a derivative condition is satisfied everywhere. Joint with Shaoming Guo and Hong Wang, we generalize this condition to arbitrary dimension and call it ``Bourgain's condition''. We unify Fourier restriction and Bochner-Riesz by conjecturing that any H\"{o}rmander type operator satisfying Bourgain's condition should have the same $L^p$-boundedness as in those two conjectures. As evidence, we prove that the failure of Bourgain's condition immediately implies the failure of such an $L^p$-boundedness in every dimension. We also prove that current techniques on the two conjectures apply equally well in our conjecture and make some progress on our conjecture that consequently improves the two conjectures in higher dimensions. I will talk about some history and some interesting components in our proof.

Extraction and splitting of Riesz bases of exponentials

Series
Analysis Seminar
Time
Wednesday, March 15, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
David WalnutGeorge Mason University

Given a discrete set $\Lambda\subseteq\mathbb{R}$ and an interval $I$, define the sequence of complex exponentials in $L^2(I)$, $\mathcal{E}(\Lambda)$, by $\{e^{2\pi i\lambda t}\colon \lambda\in\Lambda\}$.  A fundamental result in harmonic analysis says that if $\mathcal{E}(\frac{1}{b}\mathbb{Z})$ is an orthogonal basis for $L^2(I)$ for any interval $I$ of length $b$.  It is also well-known that there exist sets $\Lambda$, which may be irregular, such that sets $\mathcal{E}(\Lambda)$ form nonorthogonal bases (known as Riesz bases) for $L^2(S)$, for $S\subseteq\mathbb{R}$ not necessarily an interval.

Given $\mathcal{E}(\Lambda)$ that forms a Riesz basis for $L^2[0,1]$ and some 0 < a < 1, Avdonin showed that there exists $\Lambda'\subseteq \Lambda$ such that $\mathcal{E}(\Lambda')$ is a Riesz basis for $L^2[0,a]$ (called basis extraction).  Lyubarskii and Seip showed that this can be done in such a way that $\mathcal{E}(\Lambda \setminus \Lambda')$ is also a Riesz basis for $L^2[a,1]$ (called basis splitting).  The celebrated result of Kozma and Nitzan shows that one can extract a Riesz basis for $L^2(S)$ from $\mathcal{E}(\mathbb{Z})$ where $S$ is a union of disjoint subintervals of $[0,1]$.

In this talk we construct sets $\Lambda_I\subseteq\mathbb{Z}$ such that the $\mathcal{E}(\Lambda_I)$ form Riesz bases for $L^2(I)$ for corresponding intervals $I$, with the added compatibility property that unions of the sets $\Lambda_I$ generate Riesz bases for unions of the corresponding intervals.  The proof of our result uses an interesting assortment of tools from analysis, probability, and number theory.  We will give details of the proof in the talk, together with examples and a discussion of recent developments.  The work discussed is joint with Shauna Revay (GMU and Accenture Federal Services (AFS)), and Goetz Pfander (Catholic University of Eichstaett-Ingolstadt).

Uniqueness results for meromorphic inner functions

Series
Analysis Seminar
Time
Wednesday, March 8, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Burak HatinogluGeorgia Tech

A meromorphic inner function is a bounded analytic function on the upper half plane with unit modulus almost everywhere on the real line and a meromorphic continuation to the complex plane. Meromorphic inner functions and equivalently meromorphic Herglotz functions play a central role in inverse spectral theory of differential operators. In this talk, I will discuss some uniqueness problems for meromorphic inner functions and their applications to inverse spectral theory of canonical Hamiltonian systems as Borg-Marchenko type results.

Nikodym-type spherical maximal functions

Series
Analysis Seminar
Time
Wednesday, March 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alan ChangPrinceton University

We study $L^p$ bounds on Nikodym maximal functions associated to spheres. In contrast to the spherical maximal functions studied by Stein and Bourgain, our maximal functions are uncentered: for each point in $\mathbb R^n$, we take the supremum over a family of spheres containing that point. This is joint work with Georgios Dosidis and Jongchon Kim.

 

Convergence of discrete non-linear Fourier transform via spectral problems for canonical systems

Series
Analysis Seminar
Time
Wednesday, February 22, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ashley ZhangUW Madison

This talk will be about connections between spectral problems for canonical systems and non-linear Fourier transforms (NLFTs). Non-linear Fourier transform is closely connected to Dirac systems, which form a subclass of canonical systems of differential equations. This connection allows one to find analogs of results on inverse spectral problems for canonical systems in the area of NLFT. In particular, NLFTs of discrete sequences, discussed in the lecture notes by Tao and Thiele, are related to spectral problems for periodic measures and the theory of orthogonal polynomials.

I will start the talk with the basics of non-linear Fourier transforms, then connect NLFTs to canonical systems. Then I will present an explicit algorithm for inverse spectral problems developed by Makarov and Poltoratski for locally-finite periodic spectral measures, as well as an extension of their work to certain classes of non-periodic spectral measures. Finally I will return to NLFT and translate the results for inverse spectral problems to results for NLFT.

Pages