Seminars and Colloquia by Series

Uniqueness results for meromorphic inner functions

Series
Analysis Seminar
Time
Wednesday, March 8, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Burak HatinogluGeorgia Tech

A meromorphic inner function is a bounded analytic function on the upper half plane with unit modulus almost everywhere on the real line and a meromorphic continuation to the complex plane. Meromorphic inner functions and equivalently meromorphic Herglotz functions play a central role in inverse spectral theory of differential operators. In this talk, I will discuss some uniqueness problems for meromorphic inner functions and their applications to inverse spectral theory of canonical Hamiltonian systems as Borg-Marchenko type results.

Nikodym-type spherical maximal functions

Series
Analysis Seminar
Time
Wednesday, March 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alan ChangPrinceton University

We study $L^p$ bounds on Nikodym maximal functions associated to spheres. In contrast to the spherical maximal functions studied by Stein and Bourgain, our maximal functions are uncentered: for each point in $\mathbb R^n$, we take the supremum over a family of spheres containing that point. This is joint work with Georgios Dosidis and Jongchon Kim.

 

Convergence of discrete non-linear Fourier transform via spectral problems for canonical systems

Series
Analysis Seminar
Time
Wednesday, February 22, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ashley ZhangUW Madison

This talk will be about connections between spectral problems for canonical systems and non-linear Fourier transforms (NLFTs). Non-linear Fourier transform is closely connected to Dirac systems, which form a subclass of canonical systems of differential equations. This connection allows one to find analogs of results on inverse spectral problems for canonical systems in the area of NLFT. In particular, NLFTs of discrete sequences, discussed in the lecture notes by Tao and Thiele, are related to spectral problems for periodic measures and the theory of orthogonal polynomials.

I will start the talk with the basics of non-linear Fourier transforms, then connect NLFTs to canonical systems. Then I will present an explicit algorithm for inverse spectral problems developed by Makarov and Poltoratski for locally-finite periodic spectral measures, as well as an extension of their work to certain classes of non-periodic spectral measures. Finally I will return to NLFT and translate the results for inverse spectral problems to results for NLFT.

Remarks on mobile sampling for general surfaces

Series
Analysis Seminar
Time
Wednesday, January 25, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ben JayeGaTech

Mobile sampling concerns finding surfaces upon which any function with Fourier transform supported in a symmetric convex set must have some large values.   We shall describe a sharp sufficient for mobile sampling in terms of the surface density introduced by Unnikrishnan and Vetterli.  Joint work with Mishko Mitkovski and Manasa Vempati.

Weighted Inequalities for Singular Integral Operators

Series
Analysis Seminar
Time
Wednesday, January 18, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 268
Speaker
Manasa VempatiGeorgia Tech

Weighted inequalities for singular integral operators are central in the study of non-homogeneous harmonic analysis. Two weight inequalities for singular integral operators, in-particular attracted attention as they can be essential in the perturbation theory of unitary matrices, spectral theory of Jacobi matrices and PDE's. In this talk, I will discuss several results concerning the two weight inequalities for various Calder\'on-Zygmund operators in both Euclidean setting and in the more generic setting of spaces of homogeneous type in the sense of Coifman and Weiss.

The two-weight conjecture for singular integral operators T was first raised by Nazarov, Treil and Volberg on finding the real variable characterization of the two weights u and v so that T is bounded on the weighted $L^2$ spaces. This conjecture was only solved completely for the Hilbert transform on R until recently. In this talk, I will describe our result that resolves a part of this conjecture for any Calder\'on-Zygmund operator on the spaces of homogeneous type by providing a complete set of sufficient conditions on the pair of weights. We will also discuss the existence of similar analogues for multilinear Calder\'on-Zygmund operators.

Normalizable frames

Series
Analysis Seminar
Time
Wednesday, October 26, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pu-Ting YuGeorgia Tech

Let $H$ be a separable Hilbert space and let $\{x_n\}$ be a Bessel sequence or a frame for $H$ which does not contain any zero elements. We say that $\{x_n\}$ is a normalizable Bessel sequence or normalizable frame if the normalized sequence $\{x_n/||x_n||\}$ remains a Bessel sequence or frame. In this talk, we will present characterizations of normalizable and non-normalizable frames . In particular, we prove that normalizable frames can only have two formulations.  Perturbation theorems tailored for normalizable frames will be also presented. Finally, we will talk about some open questions related to the normalizable frames.

Bounds on some classical exponential Riesz basis

Series
Analysis Seminar
Time
Wednesday, October 12, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Thibaud AlemanyGeorgia Tech

We estimate the  Riesz basis (RB) bounds obtained in Hruschev, Nikolskii and Pavlov' s classical characterization of exponential RB. As an application, we  improve previously known estimates of the RB bounds in some classical cases, such as RB obtained by an Avdonin type perturbation, or RB which are the zero-set of sine-type functions. This talk is based on joint work with S. Nitzan

Affine spheres over Polygons, Extremal length and a new classical minimal surface: a problem I can do and two I cannot

Series
Analysis Seminar
Time
Wednesday, September 21, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael WolfGeorgia Tech

In this introductory talk, we describe an older result (with David Dumas) that relates hyperbolic affine spheres over polygons to polynomial Pick differentials in the plane. All the definitions will be developed.  In the last few minutes, I will quickly introduce two analytic problems in other directions that I struggle with.

The HRT Conjecture for single perturbations of confi gurations

Series
Analysis Seminar
Time
Wednesday, April 20, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Klaus 1447
Speaker
Kasso OkoudjouTufts University

 In 1996, C.~Heil, J.~Ramanatha, and P.~Topiwala conjectured that the (finite) set $\mathcal{G}(g, \Lambda)=\{e^{2\pi i b_k \cdot}g(\cdot - a_k)\}_{k=1}^N$ is linearly independent for any  non-zero square integrable function $g$ and  subset $\Lambda=\{(a_k, b_k)\}_{k=1}^N \subset \mathbb{R}^2.$ This problem is now known as the HRT Conjecture, and is still largely unresolved. 

 

In this talk,  I will then introduce an inductive approach to investigate the conjecture, by attempting to answer the following question. Suppose the HRT conjecture is true for a function $g$ and a fixed set of $N$ points $\Lambda=\{(a_k, b_k)\}_{k=1}^N \subset \mathbb{R}^2.$ For what other point $(a, b)\in \mathbb{R}^2\setminus \Lambda$ will the HRT remain true for the same function $g$ and the new set of $N+1$ points $\Lambda'=\Lambda \cup \{(a, b)\}$?  I will report on a recent joint work with V.~Oussa in which we use this approach to prove the conjecture when the initial configuration  $\Lambda=\{(a_k, b_k)\}_{k=1}^N $  is either a subset of the unit lattice $\mathbb{Z}^2$ or a subset of a line $L$.   

 

Calibrations and energy-minimizing maps of rank-1 symmetric spaces

Series
Analysis Seminar
Time
Wednesday, March 16, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joeseph HoisungtonUniversity of Georgia

We will prove lower bounds for energy functionals of mappings of the real, complex and quaternionic projective spaces with their canonical Riemannian metrics.  For real and complex projective spaces, these results are sharp, and we will characterize the family of energy-minimizing mappings which occur in these results.  For complex projective spaces, these results extend to all Kahler metrics.  We will discuss the connections between these results and several theorems and questions in systolic geometry.

Pages