Seminars and Colloquia by Series

Bifurcation for hollow vortex desingularization

Series
PDE Seminar
Time
Tuesday, October 1, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ming ChenUniversity of Pittsburgh

A hollow vortex is a region of constant pressure bounded by a vortex sheet and suspended inside a perfect fluid; we can think of it as a spinning bubble of air in water. In this talk, we present a general method for desingularizing non-degenerate steady point vortex configurations into collections of steady hollow vortices. The machinery simultaneously treats the translating, rotating, and stationary regimes. Through global bifurcation theory, we further obtain maximal curves of solutions that continue until the onset of a singularity. As specific examples, we obtain the first existence theory for co-rotating hollow vortex pairs and stationary hollow vortex tripoles, as well as a new construction of Pocklington’s classical co-translating hollow vortex pairs. All of these families extend into the non-perturbative regime, and we obtain a rather complete characterization of the limiting behavior along the global bifurcation curve. This is a joint work with Samuel Walsh (Missouri) and Miles Wheeler (Bath).

Existence of stationary measures for partially damped SDEs with generic, Euler-type nonlinearities

Series
PDE Seminar
Time
Tuesday, September 24, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Keagan CallisGeorgia Tech

We study nonlinear energy transfer and the existence of stationary measures in a class of degenerately forced SDEs on R^d with a quadratic, conservative nonlinearity B(x, x) constrained to possess various properties common to finite-dimensional fluid models and a linear damping term −Ax that acts only on a proper subset of phase space in the sense that dim(kerA) ≫ 1. Existence of a stationary measure is straightforward if kerA = {0}, but when the kernel of A is nontrivial a stationary measure can exist only if the nonlinearity transfers enough energy from the undamped modes to the damped modes. We develop a set of sufficient dynamical conditions on B that guarantees the existence of a stationary measure and prove that they hold “generically” within our constraint class of nonlinearities provided that dim(kerA) < 2d/3 and the stochastic forcing acts directly on at least two degrees of freedom. We also show that the restriction dim(kerA) < 2d/3 can be removed if one allows the nonlinearity to change by a small amount at discrete times. In particular, for a Markov chain obtained by evolving our SDE on approximately unit random time intervals and slightly perturbing the nonlinearity within our constraint class at each timestep, we prove that there exists a stationary measure whenever just a single mode is damped.

Finite-time blowup for the Fourier-restricted Euler and hypodissipative Navier-Stokes model equations

Series
PDE Seminar
Time
Tuesday, September 17, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Evan MillerUniversity of Alabama in Huntsville

In this talk, I will introduce the Fourier-restricted Euler and hypodissipative Navier–Stokes equations. These equations are analogous to the Euler equation and hypodissipative Navier–Stokes equation, respectively, but with the Helmholtz projection replaced by a projection onto a more restrictive constraint space. The nonlinear term arising from the self-advection of velocity is otherwise unchanged. I will prove finite time-blowup when the dissipation is weak enough, by making use of a permutation symmetric Ansatz that allows for a dyadic energy cascade of the type found in the Friedlander-Katz-Pavlović dyadic Euler/Navier–Stokes model equation.

Fourier Galerkin approximation of mean field control problems

Series
PDE Seminar
Time
Tuesday, September 3, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE: https://gatech.zoom.us/j/92007172636?pwd=intwy0PZMdqJX5LUAbseRjy3T9MehD.1
Speaker
Mattia MartiniLaboratoire J.A. Dieudonné, Université Côte d&#039;Azur
Over the past twenty years, mean field control theory has been developed to study cooperative games between weakly interacting agents (particles).  The limiting formulation of a (stochastic) mean field control problem, arising as the number of agents approaches infinity, is a control problem for trajectories with values in the space of probability measures. The goal of this talk is to introduce a finite dimensional approximation of the solution to a mean field control problem set on the $d$-dimensional torus.  Our approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to truncate the Fourier expansion of probability measures. 
 
First, we prove that the Fourier-Galerkin method induces a new finite-dimensional control problem with trajectories in the space of probability measures with a finite number of Fourier coefficients. Subsequently, our main result asserts that, whenever the cost functionals are smooth and convex, the optimal control, trajectory, and value function from the approximating problem converge to their counterparts in the original mean field control problem. Noticeably, we show that our method yields a polynomial convergence rate directly proportional to the data's regularity. This convergence rate is faster than the one achieved by the usual particles methods available in the literature, offering a more efficient alternative. Furthermore, our technique also provides an explicit method for constructing an approximate optimal control along with its corresponding trajectory. This talk is based on joint work with François Delarue.

Differential Equations for Continuous-Time Deep Learning

Series
PDE Seminar
Time
Friday, April 19, 2024 - 15:00 for 1 hour (actually 50 minutes)
Location
CSIP Library (Room 5126), 5th floor, Centergy one
Speaker
Dr.Lars RuthottoResearch Associate Professor in the Department of Mathematics and the Department of Computer Science at Emory University

In this talk, we introduce and survey continuous-time deep learning approaches based on neural ordinary differential equations (neural ODEs) arising in supervised learning, generative modeling, and numerical solution of high-dimensional optimal control problems. We will highlight theoretical advantages and numerical benefits of neural ODEs in deep learning and their use to solve otherwise intractable PDE problems.

Self-similar singular solutions in gas dynamics

Series
PDE Seminar
Time
Tuesday, April 9, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Juhi JangUniversity of Southern California

In this talk, we will discuss mathematical construction of self-similar solutions exhibiting implosion arising in gas dynamics and gaseous stars, with focus on self-similar converging-diverging shock wave solutions to the non-isentropic Euler equations and imploding solutions to the Euler-Poisson equations describing gravitational collapse. The talk is based on joint works with Guo, Hadzic, Liu and Schrecker. 

Gradient Elastic Surfaces and the Elimination of Fracture Singularities in 3D Bodies

Series
PDE Seminar
Time
Tuesday, March 26, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Casey Rodriguez University of North Carolina at Chapel Hill

In this talk, we give an overview of recent work in gradient elasticity.  We first give a friendly introduction to gradient elasticity—a mathematical framework for understanding three-dimensional bodies that do not dissipate a form of energy during deformation. Compared to classical elasticity theory, gradient elasticity incorporates higher spatial derivatives that encode certain microstructural information and become significant at small spatial scales. We then discuss a recently introduced theory of three-dimensional Green-elastic bodies containing gradient elastic material boundary surfaces. We then indicate how the resulting model successfully eliminates pathological singularities inherent in classical linear elastic fracture mechanics, presenting a new and geometric alternative theory of fracture.

Spectral minimal partitions, nodal deficiency and the Dirichlet-to-Neumann map

Series
PDE Seminar
Time
Tuesday, March 12, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jeremy L. MarzuolaUniversity of North Carolina at Chapel Hill

The oscillation of a Laplacian eigenfunction gives a great deal of information about the manifold on which it is defined. This oscillation can be encoded in the nodal deficiency, an important geometric quantity that is notoriously hard to compute, or even estimate. Here we compare two recently obtained formulas for the nodal deficiency, one in terms of an energy function on the space of equipartitions of the manifold, and the other in terms of a two-sided Dirichlet-to-Neumann map defined on the nodal set. We relate these two approaches by giving an explicit formula for the Hessian of the equipartition energy in terms of the Dirichlet-to-Neumann map. This allows us to compute Hessian eigenfunctions, and hence directions of steepest descent, for the equipartition energy in terms of the corresponding Dirichlet-to-Neumann eigenfunctions. Our results do not assume bipartiteness, and hence are relevant to the study of spectral minimal partitions.  This is joint work with Greg Berkolaiko, Yaiza Canzani and Graham Cox.

Viscosity solutions for Mckean-Vlasov control on a torus

Series
PDE Seminar
Time
Tuesday, March 5, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Qinxin YanPrinceton University

An optimal control problem in the space of probability measures, and the viscosity solutions of the corresponding dynamic programming equations defined using the intrinsic linear derivative are studied. The value function is shown to be Lipschitz continuous with respect to a novel smooth Fourier Wasserstein metric. A comparison result between the Lipschitz viscosity sub and super solutions of the dynamic programming equation is proved using this metric, characterizing the value function as the unique Lipschitz viscosity solution. This is joint work with Prof. H. Mete Soner. 

On the well-posedness of the Mortensen observer for a defocusing cubic wave equation

Series
PDE Seminar
Time
Tuesday, February 27, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Online: https://gatech.zoom.us/j/95574359880?pwd=cGpCa3J1MFRkY0RUeU1xVFJRV0x3dz09
Speaker
Jesper SchröderTechnische Universität Berlin

In this presentation the analytical background of nonlinear observers based on minimal energy estimation is discussed. Originally, such strategies were proposed for the reconstruction of the state of finite dimensional dynamical systems by means of a measured output where both the dynamics and the output are subject to white noise. Our work aims at lifting this concept to a class of partial differential equations featuring deterministic perturbations using the example of a wave equation with a cubic defocusing term in three space dimensions. In particular, we discuss local regularity of the corresponding value function and consider operator Riccati equations to characterize its second spatial derivative.

Pages