Seminars and Colloquia by Series

Fixed points of unitary decomposition complexes

Series
Geometry Topology Seminar
Time
Monday, November 18, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vesna StojanoskaMIT
For a fixed integer n, consider the nerve L_n of the topological poset of orthogonal decompositions of complex n-space into proper orthogonal subspaces. The space L_n has an action by the unitary group U(n), and we study the fixed points for subgroups of U(n). Given a prime p, we determine the relatively small class of p-toral subgroups of U(n) which have potentially non-empty fixed points. Note that p-toral groups are a Lie analogue of finite p-groups, thus if we are interested in the U(n)-space L_n at a fixed prime p, only the p-toral subgroups of U(n) play a significant role. The space L_n is strongly related to the K-theory analogues of the symmetric powers of spheres and the Weiss tower for the functor that assigns to a vector space V the classifying space BU(V). Our results are a step toward a K-theory analogue of the Whitehead conjecture as part of the program of Arone-Dwyer-Lesh. This is joint work with J.Bergner, R.Joachimi, K.Lesh, K.Wickelgren.

Colored Jones polynomials and double affine Hecke algebras

Series
Geometry Topology Seminar
Time
Monday, November 11, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter SamuelsonUniversity of Toronto
Frohman and Gelca showed that the Kauffman bracket skein module of the thickened torus is the Z_2 invariant subalgebra A'_q of the quantum torus A_q. This shows that the Kauffman bracket skein module of a knot complement is a module over A'_q. We discuss a conjecture that this module is naturally a module over the double affine Hecke algebra H, which is a 3-parameter family of algebras which specializes to A'_q. We give some evidence for this conjecture and then discuss some corollaries. If time permits we will also discuss a related topological construction of a 2-parameter family of H-modules associated to a knot in S^3. (All results in this talk are joint with Yuri Berest.)

All finite groups are involved in the mapping class group

Series
Geometry Topology Seminar
Time
Friday, November 8, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
G. MasbaumInstitut de Mathématiques de Jussieu
Let g be a positive integer and let Gamma_g be the mapping class group of the genus g closed orientable surface. We show that every finite group is involved in Gamma_g. (Here a group G is said to be involved in a group Gamma if G is isomorphic to a quotient of a subgroup of Gamma of finite index.) This answers a question asked by U. Hamenstadt. The proof uses quantum representations of mapping class groups. (Joint work with A. Reid.)

The structure of high distance Heegaard splittings

Series
Geometry Topology Seminar
Time
Monday, November 4, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jesse JohnsonOklahoma State University
The notion of distance for a Heegaard splitting of athree-dimensional manifold $M$, introduced by John Hempel, has provedto be a very powerful tool for understanding the geometry and topologyof $M$. I will describe how distance, and a slight generalizationknown as subsurface projection distance, can be used to explore theconnection between geometry and topology at the center of the moderntheory hyperbolic three-manifolds.In particular, Schalremann-Tomova showed that if a Heegaard splittingfor $M$ has high distance then it will be the only irreducibleHeegaard splitting of $M$ with genus less than a certain bound. I willexplain this result in terms of both a geometric proof and atopological proof. Then, using the notion of subsurface distance, Iwill describe a construction of a manifold with multiple distinctlow-distance Heegaard splittings of the same (small) genus, and amanifold with both a high distance, low-genus Heegaard splitting and adistinct, irreducible high-genus, low-distance Heegaard splitting.

Tight small Seifert fibered manifolds

Series
Geometry Topology Seminar
Time
Monday, October 28, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bulent TosunUniversity of Virginia
Contact geometry in three dimensions is a land of two disjoint classes ofcontact structures; overtwisted vs. tight. The former ones are flexible,means their geometry is determined by algebraic topology of underlying twoplane fields. In particular their existence and classification areunderstood completely. Tight contact structure, on the other hand, arerigid. The existence problem of a tight contact structure on a fixed threemanifold is hard and still widely open. The classification problem is evenharder. In this talk, we will focus on the classification of tight contactstructures on Seifert fibered manifolds on which the existence problem oftight contact structures was settled recently by Lisca and Stipsicz.

Essential spunnormal surfaces via tropical geometry

Series
Geometry Topology Seminar
Time
Monday, October 7, 2013 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew BrasileUniversity of Illinois at Chicago
In a paper published in 2012, Nathan Dunfield and StavrosGaroufalidis gave simple, sufficient conditions for a spunnormal surface tobe essential in a compact, orientable 3-manifold with torus boundary. Thistalk will discuss a generalization of this result which utilizes a theoremfrom tropical geometry.

Relative Symplectic Caps, 4-Genus and Fibered Knots

Series
Geometry Topology Seminar
Time
Monday, September 30, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dheeraj KulkarniGeorgia Tech
The $4$-genus of a knot is an important measure of complexity, related tothe unknotting number. A fundamental result used to study the $4$-genusand related invariants of homology classes is the Thom conjecture,proved by Kronheimer-Mrowka, and its symplectic extension due toOzsvath-Szabo, which say that closed symplectic surfacesminimize genus.Suppose (X, \omega) is a symplectic 4-manifold with contact type bounday and Sigma is a symplectic surface in X such that its boundary is a transverse knot in the boundary of X. In this talk we show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, \Sigma) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in the 3-sphere.We will also discuss a relative version of Giroux's criterion of Stein fillability. This is joint work with Siddhartha Gadgil

Congruence subgroups of braid groups

Series
Geometry Topology Seminar
Time
Monday, September 23, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tara BrendleU Glasgow
The so-called integral Burau representation gives a symplectic representation of the braid group. In this talk we will discuss the resulting congruence subgroups of braid groups, that is, preimages of the principal congruence subgroups of the symplectic group. In particular, we will show that the level 4 congruence braid group is equal to the group generated by squares of Dehn twists. One key tool is a "squared lantern relation" amongst Dehn twists. Joint work with Dan Margalit.

The decategorification of bordered Khovanov homology

Series
Geometry Topology Seminar
Time
Monday, September 16, 2013 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lawrence RobertsUniversity of Alabama
Khovanov homology is an invariant of a link in S^3 which refines the Jones polynomial of the link. Recently I defined a version of Khovanov homology for tangles with interesting locality and gluing properties, currently called bordered Khovanov homology, which follows the algebraic pattern of bordered Floer homology. After reviewing the ideas behind bordered Khovanov homology, I will describe what appears to be the Jones polynomial-like structure which bordered Khovanov homology refines.

Pages