Seminars and Colloquia by Series

Obstructing Reducible Surgeries: Slice Genus and Thickness Bounds

Series
Geometry Topology Seminar
Time
Wednesday, November 16, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
University of Georgia (Boyd 322)
Speaker
Robert DeYosoUniversity of Iowa

We study reducible surgeries on knots in S^3, developing thickness bounds for L-space knots that admit reducible surgeries and lower bounds on the slice genus of general knots that admit reducible surgeries. The L-space knot thickness bounds allow us to finish off the verification of the Cabling Conjecture for thin knots. Our techniques involve the d-invariants and mapping cone formula from Heegaard Floer homology. This is joint work with Holt Bodish.

Graph Analogues of Big Mapping Class Groups: Coarse Geometry by George Domat

Series
Geometry Topology Seminar
Time
Monday, November 14, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Speaker
George DomatRice University

We will introduce an analogue of big mapping class groups as defined by Algom-Kfir and Bestvina which hopes to answer the question: What is “Big Out(Fn)”? This group will consist of proper homotopy classes of proper homotopy equivalences of locally finite, infinite graphs. We will then discuss some classification theorems related to the coarse geometry of these groups. This is joint work with Hannah Hoganson and Sanghoon Kwak.

Does the Jones polynomial of a knot detect the unknot? A novel approach via braid group representations and class numbers of number fields

Series
Geometry Topology Seminar
Time
Monday, November 7, 2022 - 16:30 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Amitesh DattaPrinceton University

How good of an invariant is the Jones polynomial? The question is closely tied to studying braid group representations since the Jones polynomial can be defined as a (normalized) trace of a braid group representation.

In this talk, I will present my work developing a new theory to precisely characterize the entries of classical braid group representations, which leads to a generic faithfulness result for the Burau representation of B_4 (the faithfulness is a longstanding question since the 1930s). In forthcoming work, I use this theory to furthermore explicitly characterize the Jones polynomial of all 3-braid closures and generic 4-braid closures. I will also describe my work which uses the class numbers of quadratic number fields to show that the Jones polynomial detects the unknot for 3-braid links - this work also answers (in a strong form) a question of Vaughan Jones.

I will discuss all of the relevant background from scratch and illustrate my techniques through simple examples.

https://gatech.zoom.us/my/margalit?pwd=b3RhY3pVZUdlRUR3S1FLZzhFR1RVUT09

Wild Rose, Narcissus and other Elliptic Flowers: a new class of billiards with surprising properties.

Series
Geometry Topology Seminar
Time
Monday, October 31, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Leonid BunimovichGeorgia Tech

I'll talk about some 2D billiards, the most visual class of dynamical systems, where orbits (rays) move along straight lines within a billiard table with elastic reflections off the boundary.  Elliptic flowers are built “around" convex polygons, and the boundary of corresponding billiard tables consists of the arcs of ellipses. It will be explained why some classes of such elliptic flowers demonstrate a never expected before dynamics, and why it raises a variety of (seemingly new) questions in geometry (particularly in 3D), in bifurcation theory (particularly about singularities of wave fronts and creation of wave trains), in statistical mechanics,  quantum chaos, and perhaps some more. The talk will be concluded by showing a free movie. Everything (including various definitions of ellipses) will be explained/reminded.

Diagrams for contractible spaces of 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, October 24, 2022 - 16:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
David GayUniversity of Georgia

Please Note: Joint Topology Seminar @ GaTech

There exist many different diagrammatic descriptions of 4-manifolds, with the usual claim that "such and such a diagram uniquely determines a smooth 4-manifold up to diffeomorphism". This raises higher order questions: Up to what diffeomorphism? If the same diagram is used to produce two different 4-manifolds, is there a diffeomorphism between them uniquely determined up to isotopy? Are such isotopies uniquely determined up to isotopies of isotopies? Such questions become important if one hopes to use "diagrams" to study spaces of diffeomorphisms between manifolds. One way to achieve these higher order versions of uniqueness is to ask that a diagram uniquely determine a contractible space of 4-manifolds (i.e. a 4-manifold bundle over a contractible space). I will explain why some standard types of diagrams do not do this and give at least one type of diagram that does do this.

An A-infinity category from instantons

Series
Geometry Topology Seminar
Time
Monday, October 24, 2022 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sherry GongTexas A&M

Please Note: Joint Topology Seminar @ GaTech

Given n points on a disk, we will describe how to build an A-infinity category based on the instanton Floer complex of links, and explain why it is finitely generated. This is based on work in progress with Ko Honda.

Asymptotics of surface group representations along rays

Series
Geometry Topology Seminar
Time
Monday, October 10, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Mike WolfGeorgia Tech

We study a particular distinguished component (the 'Hitchin component') of the space of surface group representations to SL(3,\R).  In this setting, both Hitchin (via Higgs bundles) and the more ancient subject of affine spheres associate a bundle of holomorphic differentials over Teichmuller space to this component of the character variety.  We focus on a ray of holomorphic differentials and provide a formula, tropical in appearance, for the asymptotic holonomy of the representations in terms of the local geometry of the differential.  Alternatively, we show how the associated equivariant harmonic maps to a symmetric space converge to a harmonic map to a building, with geometry determined by the differential. All of this is joint work with John Loftin and Andrea Tamburelli, and all the constructions and definitions will be (likely briskly) explained.

Geography of surface bundles over surfaces

Series
Geometry Topology Seminar
Time
Monday, October 3, 2022 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
İnanç BaykurUMass Amherst / Harvard

An outstanding problem for surface bundles over surfaces, closely related to the symplectic geography problem in dimension four, is to determine for which fiber and base genera there are examples with non-zero signatures. I will report on our recent progress (joint with M. Korkmaz), which resolves the problem for all fiber and base genera except for 18 pairs at the time of writing.

The stable cohomology of the level-l subgroup of the mapping class group (Joint Topology Seminar @ UGA)

Series
Geometry Topology Seminar
Time
Monday, September 26, 2022 - 16:30 for 1 hour (actually 50 minutes)
Location
University of Georgia (Boyd 322)
Speaker
Andrew PutmanNotre Dame

After an introduction to how to think about the mapping class groupand its cohomology, I will discuss a recent theorem of mine saying
that passing to the level-l subgroup does not change the rational cohomology in a stable range.

Pages