On the relativistic Landau equation
- Series
- PDE Seminar
- Time
- Tuesday, September 24, 2019 - 15:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Maja Taskovic – Emory University – maja.taskovic@emory.edu
In this talk, I will discuss from a mathematical viewpoint some sufficient conditions that guarantee the energy equality for weak solutions. I will mainly focus on a fluid equation example, namely the inhomogeneous Euler equations. The main tools are the commutator Lemmas. This is a joint work with Ming Chen.
In this talk we will review compactness results and singularity theorems related to harmonic maps. We first talk about maps from Riemann surfaces with tension fields bounded in a local Hardy space, then talk about stationary harmonic maps from higher dimensional manifolds, finally talk about heat flow of harmonic maps.
In this talk we study master equations arising from mean field game
problems, under the crucial monotonicity conditions.
Classical solutions of such equations require very strong technical
conditions. Moreover, unlike the master equations arising from mean
field control problems, the mean field game master equations are
non-local and even classical solutions typically do not satisfy the
comparison principle, so the standard viscosity solution approach seems
infeasible. We shall propose a notion of weak solution for such
equations and establish its wellposedness. Our approach relies on a new
smooth mollifier for functions of measures, which unfortunately does not
keep the monotonicity property, and the stability result of master
equations. The talk is based on a joint work with Jianfeng Zhang.
I this talk I will summerize some of our contributions in the analysis of parabolic elliptic Keller-Segel system, a typical model in chemotaxis. For the case of linear diffusion, after introducing the critical mass in two dimension, I will show our result for blow-up conditions for higher dimension. The second part of the talk is concentrated in the critical exponent for Keller-Segel system with porus media type diffusion. In the end, motivated from the result on nonlocal Fisher-KPP equation, we show that the nonlocal reaction will also help in preventing the blow-up of the solutions.
In a joint work with Sameer Iyer, the validity of steady Prandtl layer expansion is established in a channel. Our result covers the celebrated Blasius boundary layer profile, which is based on uniform quotient estimates for the derivative Navier-Stokes equations, as well as a positivity estimate at the flow entrance.
First, we introduce a new field theoretical interpretation of quantum mechanical wave functions, by postulating that the wave function is the common wave function for all particles in the same class determined by the external potential V, of the modulus of the wave function represents the distribution density of the particles, and the gradient of phase of the wave function provides the velocity field of the particles. Second, we show that the key for condensation of bosonic particles is that their interaction is sufficiently weak to ensure that a large collection of boson particles are in a state governed by the same condensation wave function field under the same bounding potential V. For superconductivity, the formation of superconductivity comes down to conditions for the formation of electron-pairs, and for the electron-pairs to share a common wave function. Thanks to the recently developed PID interaction potential of electrons and the average-energy level formula of temperature, these conditions for superconductivity are explicitly derived. Furthermore, we obtain both microscopic and macroscopic formulas for the critical temperature. Third, we derive the field and topological phase transition equations for condensates, and make connections to the quantum phase transition, as a topological phase transition. This is joint work with Tian Ma.